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Summary

The scope of this technical note is to review current methods for the detection of colistin 
resistance and to provide a framework for its investigation. The document highlights the 
critical distinction between phenotypic detection of colistin resistance and genotypic 
detection of specific colistin resistance mechanisms, such as mcr and chromosomal 
mutations. Colistin resistance in Enterobacterales and Acinetobacter baumannii is 
included in the WHO Global Antimicrobial Resistance Surveillance System (GLASS). 
Currently, however, reliable tests for phenotypic detection of colistin resistance for 
clinical and surveillance purposes are not widely available.

The technical note describes existing phenotypic methods for detecting colistin resistance, 
genotypic methods for detecting specific colistin resistance mechanisms and surveillance 
strategies for monitoring colistin resistance. 

This is a rapidly evolving field with new resistance genes being identified regularly and new 
methods for phenotypic resistance testing being described, hence this document will be 
updated, as needed, to reflect these developments. 

This is the second edition of The detection and reporting of colistin resistance that was first 
published in December 2018 (https://apps.who.int/iris/bitstream/handle/10665/277175/
WHO-WSI-AMR-2018.4-eng.pdf). This new edition includes information on additional 
mcr genes which have since been identified. It also includes updated information in the 
section on the laboratory related detection of colistin resistance. Additional technical 
guidance is provided on phenotypic methods, including information on some recently 
published novel methods. The section on genotypic methods includes updated technical 
guidance and tools.

Key Points

•	� In humans, colistin is generally used as a last resort to treat infections with highly resistant Gram-negative 
bacteria.

•	� Resistance to colistin is ongoing, with new resistance genes emerging.

•	� Acquired colistin resistance mechanisms are both plasmid-mediated and chromosomal.

•	� Phenotypic testing for colistin susceptibility has inherent technical difficulties, and only broth microdilution 
is currently recommended.

•	� Genotypic testing is limited to the detection of acquired resistance genes, so a negative result in a PCR test 
cannot be used to predict susceptibility to colistin.

•	� Surveillance of colistin resistance in Enterobacterales and Acinetobacter baumannii is included in the WHO GLASS.

•	� This is a rapidly evolving field, and this document will be updated as needed.

https://apps.who.int/iris/bitstream/handle/10665/277175/WHO-WSI-AMR-2018.4-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/277175/WHO-WSI-AMR-2018.4-eng.pdf
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01Introduction

Colistin belongs to a group of antimicrobial agents known as polymyxins, which were 
originally isolated from the spore-forming soil organism Paenibacillus polymyxa. 
Molecules in this group are polymyxins A, B, C, D and E, of which only polymyxin E (colistin) 
and polymyxin B are used clinically in humans.

Colistin is a mixture of polymyxin E1 and E2, two bactericidal pentacationic lipopeptides 
whereas polymyxin B is composed of polymyxins B1, B1-I, B2, B3, and B6. Polymyxin B 
has bactericidal action against almost all Gram-negative bacteria.

The mode of action of colistin is not fully elucidated but involves binding to 
lipopolysaccharides and phospholipids in the outer membrane of Gram-negative 
organisms, which results in membrane disruption and cell death. Colistin is active 
against a wide variety of Gram-negative bacteria and is not active against Gram-positive 
bacteria, which lack an outer membrane. 

Colistin is used in both human and veterinary medicine. In humans, colistin is generally 
used to treat infections with multidrug-resistant, extensively drug-resistant and pan drug-
resistant bacteria (1). It is usually administered by injection or inhalation (the latter, for 
example, for patients with cystic fibrosis) as the sodium salt of colistin methanesulfonate, 
which is an inactive prodrug (2,3). It is considered less toxic than colistin sulfate, which is 
used orally (with very limited absorption) or topically as for selective gut decontamination 
in patients with hematological diseases or at Intensive Care Units (4).

In veterinary medicine, colistin has been widely used in various food-producing animals 
(broiling and laying hens, pigs, calves, beef cattle, dairy cattle, meat- and milk-producing 
sheep and goats, rabbits and fish in aquaculture) for the prevention and treatment of 
infections caused by Enterobacteriaceae and other Gram-negative bacteria and for 
growth promotion. In veterinary medicine, colisitin is usually administered orally (5). 
The wide use of colistin in food-producing animals is considered to have contributed 
extensively to the emergence of resistance to this drug (5). 

With the spread of highly resistant bacteria such as carbapenemase-producing 
Enterobacterales and multi-drug resistant Pseudomonas aeruginosa and Acinetobacter 
baumannii, colistin has been used increasingly as an agent of last resort. The emergence 
of colistin resistance in multidrug-resistant bacteria is therefore a significant clinical and 
public health concern (6-9). 
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Table 1. Activity of colistin against selected pathogenic bacteria

ORGANISM NATURAL STATE (RESISTANT OR SUSCEPTIBLE TO POLYMYXINS)

Escherichia coli Susceptible 

Klebsiella spp. Susceptible 

Enterobacter spp. Susceptible 

Pseudomonas aeruginosa Susceptible 

Acinetobacter spp. Susceptible 

Salmonella spp. Susceptible (MIC values are often higher than in other species)

Shigella spp. Susceptible 

Pasteurella spp. Susceptible 

Haemophilus spp. Susceptible 

Aeromonas spp. Susceptible 

Proteus spp. Intrinsically resistant 

Providencia spp. Intrinsically resistant 

Morganella morganii Intrinsically resistant 

Serratia spp. Intrinsically resistant 

Brucella spp. Intrinsically resistant 

Neisseria spp. Intrinsically resistant 

Chromobacterium spp. Intrinsically resistant 

Burkholderia spp. Intrinsically resistant 

Gram-positive bacteria All Gram-positive bacteria are intrinsically resistant to polymyxins because of the absence of an 
outer membrane. 

The spectrum of colistin (Table 1) includes activity in vitro against Acinetobacter spp., 
Pseudomonas aeruginosa, Klebsiella spp., Enterobacter spp., Escherichia coli, Salmonella 
spp. (MIC values are often higher that other species), Shigella spp., Citrobacter spp., 
Yersinia pseudotuberculosis and Haemophilus influenzae. Furthermore, colistin has 
considerable activity against Stenotrophomonas spp., Vibrionacaeae and Bordetella spp., 
whereas it is not active against some Gram-negative aerobic bacilli, including Burkholderia 
mallei, Burkholderia cepacia, Proteus spp., Providencia spp., Morganella morganii, Serratia 
spp., Edwardsiella spp. and Brucella spp. (10-13), Gram-negative and Gram-positive aerobic 
cocci, Gram-positive aerobic bacilli, some anaerobes, fungi and parasites (4,14). 
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to colistin

Acquired resistance to polymyxins in naturally susceptible species is usually the result of 
modifications of the bacterial cell surface, including alterations to the lipopolysaccharide 
structure. Other reported resistance mechanisms include shedding of capsular 
polysaccharides, which trap or bind polymyxins, as found in some isolates of Klebsiella 
pneumoniae (15). In A. baumannii, two primary mechanisms of chromosomally mediated 
colistin resistance have been described. The first is due to loss of lipopolysaccharide 
production and the second to modification of the system that allows bacteria to 
respond to environmental conditions, affecting lipid modification and reducing bacterial 
membrane permeability (15,16). Resistance arising from chromosomal mutations is not 
usually transferred horizontally among bacteria (17). 

A plasmid-mediated gene that confers resistance to colistin, mcr-1, was first reported in 
late 2015 in E. coli isolates from food animals and their meat collected in China during 
2011–2014 and in E. coli and K. pneumoniae isolates collected from human patients in 
China in 2014 (18). Although colistin had been used extensively in food-producing animals 
globally for many years, it was not available for human clinical use in China until 2017, 
suggesting that the selection pressure for the spread of mcr-1 was driven by veterinary use 
of colistin (19). 

Shortly after this first description, it was observed that the mcr-1 gene could be found 
globally in K. pneumoniae, E. coli, Enterobacter cloacae and Salmonella spp. isolates of 
animal, environmental and human origin (18, 20-26). The global spread of mcr-1 predated 
its recognition as a colistin resistance gene and was probably also facilitated by human 
travel, as suggested by the finding of the gene in enteric bacteria from travellers returning 
to Europe after visiting countries with a high prevalence of mcr-1 in South America, Asia 
and Africa (19, 27). 

2.1 Mutational colistin 
resistance

2.2 Transferable 
colistin resistance
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After identification of mcr-1, wide scientific attention led to recognition of multiple mcr-1 
variants (28-37) and ten additional (at the time of writing) mcr gene families (38). The latter 
include mcr-2 in E. coli and Salmonella spp. from pigs, cattle and chickens in Belgium (39, 
40), mcr-3 in human and animal E. coli, Proteus spp. and Aeromonas spp. in countries in 
Asia, Europe and South America (41), mcr-4 in E. coli and Salmonella enterica serovar 
Typhimurium from pigs and humans in Belgium, Italy and Spain (42, 43), mcr-5 in poultry and 
poultry meat isolates of S. enterica serovar Paratyphi B d-tartrate fermenting and in porcine 
E. coli in Germany (44, 45), mcr-6 in Moraxella sp. isolates from pigs in the United Kingdom 
(36), mcr-7 in K. pneumoniae from chickens in China (46, 47), mcr-8 in K. pneumoniae from 
humans and pigs in China (48), mcr-9 in a Salmonella Typhimurium strain isolated from a 
human patient in Washington State, USA (49) and mcr-10 in a clinical strain of Enterobacter 
roggenkampii isolated in China (50). It is noteworthy to mention that the S. Typhimurium 
strain in which mcr-9 originally was detected was phenotypically susceptible to colistin 
according to EUCAST with an MIC of 2 Mg/L. The co-occurrence of more than one of these 
genes has been reported in E. coli and Salmonella spp. isolates of human and animal origin 
in Europe and China, such as the simultaneous presence of mcr-1 and mcr-3 and of mcr-1 
and mcr-4 (51-55). 

Bacteria isolated from food-producing animals to date appear to carry the mcr genes more 
frequently than bacteria isolated from humans, which is probably a consequence of the 
selective pressure exerted by the wide use of colistin in veterinary practice (15). Importantly, 
mcr-mediated colistin resistance can be transferred among bacterial strains, species and 
genera. To limit further dissemination of such genes, accurate identification of colistin-
resistant, mcr-encoding isolates is of critical importance.



03 Laboratory detection of colistin resistance 

5

03Laboratory detection of 
colistin resistance 

Testing for antimicrobial susceptibility by phenotypic methods is currently the cornerstone 
of AMR surveillance and is necessary to determine the occurrence of colistin resistance 
within GLASS. Phenotypic testing for antimicrobial susceptibility to colistin is, however, 
complex. The technical difficulties in phenotypic testing for colistin susceptibility include 
poor diffusion of polymyxins through agar, which compromises the performance of both 
disc diffusion and gradient diffusion methods, and the tendency of polymyxins to bind to 
the surface of plastics (e.g. the plastic of microtitre trays used for broth microdilution and 
of pipette tips) (56). 

International standard-setting organizations such as the Clinical and Laboratory 
Standards Institute (CLSI)1 and the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST)2 formed a joint polymyxin breakpoints working group in March 2016, 
which recommended only broth microdilution for testing of colistin susceptibility. Thus, 
the susceptibility of Enterobacteriaceae, P. aeruginosa and Acinetobacter spp. to colistin 
should be tested according to the International Organization for Standardization standard 
broth microdilution method (ISO 20776-1), in which cation-adjusted Mueller-Hinton broth 
is used. No additives may be included in any part of testing (in particular no polysorbate-80 
or other surfactants), because, for example, polysorbate 80 can act synergistically with 
polymyxins and artificially lower the minimum inhibitory concentration (MIC) (57). Trays 
should be made of plain polystyrene, and sulfate salts of polymyxins must be used (the 
methane sulfonate derivative of colistin cannot be used as it is an inactive pro-drug 
that breaks down slowly in solution). A review of the performance of different broth 
microdilution-based systems used for colistin susceptibility testing is available (58). 
CLSI has recently included two additional methods, Colistin Broth Disk Elution (CBDE) 
and Colistin Agar Test (CAT) as acceptable for detection of colistin resistance (59). Broth 
microdilution remains the only approved and recommended method for polymyxin B.

Quality control is essential in phenotypic detection of colistin resistance. To ensure that 
the method used provides reliable results, inclusion of a strain with low-level colistin 
resistance (such as mcr-1-positive E. coli  NCTC 13846) is recommended by EUCAST (60). 

Phenotypic results can be interpreted and reported as either the epidemiological cut-offs 
(according to EUCAST or CLSI), which define wild-type and non-wild-type populations, or 
as clinical breakpoints, which define clinical susceptibility and resistance (Table 2) (61-63).

3.1 Phenotypic 
methods

1 �https://clsi.org/
2 http://www.eucast.org/
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Clinical trials, including ones in which new antibiotics are compared, are providing new 
data on the clinical effectiveness of colistin for the treatment of infections caused by 
Gram-negative bacteria. According to the clinical outcomes, colistin appears to be a poor 
mono-therapeutic option, especially when other drugs are available (64, 65). In particular, 
the dosing of colistin is complex, as its pharmacokinetics differs widely among patients 
(66). Therefore, further review of clinical outcomes is necessary to determine whether 
currently established breakpoints and epidemiological cut-off values accurately inform 
clinical decisions. See CLSI and EUCAST documents for the latest information. 

Testing for antimicrobial susceptibility by broth microdilution requires greater laboratory 
capacity than standard disc diffusion and gradient diffusion methods and other phenotypic 
methods. Nevertheless, other methods are either insufficiently accurate or have not yet 
undergone rigorous multicentre evaluation with large collections of bacteria, including 
different species (i.e. most Enterobacteriaceae and Gram-negative non-fermenters), that 
express all known colistin resistance mechanisms. Thus, these methods cannot yet be 
recommended as best practice.

The methods that appear promising but are still to undergo the rigorous evaluation 
described above are: (i) agar-based screening media for bacteria suspected to be 
colistin-resistant (67-69), which should always be followed by further investigation of 
the colonies growing on such media by broth microdilution and/or molecular methods; 
(ii) the Rapid Polymyxin NP test (70); (iii) Colispot (58); and (iv) disc prediffusion (71). 
The performance of these methods depends on the bacterial species and the colistin 
resistance mechanisms (72). 

EUCAST considers MIC-determination by broth microdilution the only valid method 
for colistin susceptibility testing. Alternative methods already tested by EUCAST 
failed to meet reasonable standards (72). CLSI considers MIC determination by broth 
microdilution, and the new proposed broth disk elution and agar dilution methods, as 
acceptable for colistin testing in Enterobacterales and Pseudomonas aeruginosa (73, 
74). In contrast, broth microdilution is the only CLSI approved method for colistin and 
polymyxin B testing in Acinetobacter spp. Colistin broth disk elution and agar dilution 
tests are considered provisional until additional data are evaluated. Alternative methods 
like colistin disk elution drop test and colistin spot test have recently been proposed (75). 
These methods were validated with a limited number of brands of disks and/or media. 

Laboratories need to take responsibility for validating the use of alternative methods. 
The recognized need for simpler, more reliable in vitro testing of colistin susceptibility 
and for methods to selectively identify colistin-resistant, mcr-positive isolates is driving 
technical development, and improved phenotypic testing products are expected to 
become available.

 

Table 2. EUCAST and CLSI clinical break points for colistin

BACTERIA SUSCEPTIBLE INTERMEDIATE RESISTANT

Enterobacteriaceae

EUCAST =< 2 -- >= 4

CLSI - =< 2 >= 4

Acinetobacter spp.*

EUCAST =< 2 -- >= 4

CLSI - =< 2 >= 4

Pseudomonas aeruginosa
EUCAST =< 2 -- >= 4

CLSI - =< 2 >= 4

* �CLSI breakpoints apply only for A. baumannii  complex.
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During its early implementation stage, GLASS only collects data on antimicrobial 
susceptibility of target pathogens, acquired by phenotypic testing (76); it does not yet 
collect data on the distribution of specific resistance mechanisms. Nevertheless, genotypic 
surveillance can be used as a basis for selection of isolates for subsequent phenotypic 
testing for antimicrobial susceptibility and the results submitted to GLASS, or it can be 
used as a supplementary investigation of resistance mechanisms for isolates with unusual 
phenotypic resistance(s). It is noteworthy to mention a few limitations, that the presence 
of transposons in association with a mcr-gene might hamper expression of the gene in 
phenotypic testing (77) as well as potential biased estimates of susceptibility that might 
lead to an overestimate of phenotypic resistance. Such studies can help in understanding 
the epidemiology of AMR and the relative contributions of the human clinical, animal health 
and agricultural sectors to the problem of AMR. They may also improve reporting to the 
Emerging Antimicrobial Resistance module in GLASS (the GLASS-EAR system). 

Genotypic results should be reported as the presence or absence of the specified colistin 
resistance mechanism or gene. At present, there is insufficient understanding of acquired 
colistin resistance mechanisms to design a molecular test that would be sufficiently 
sensitive or specific to be recommended as best practice. In particular, genotypic methods 
would probably not detect all the diverse chromosomal mutations known to be responsible 
for most phenotypic colistin resistance in clinical settings (15) but would be limited to the 
detection of acquired colistin resistance genes. A few published and/or commercially 
available colistin molecular tests are available for detecting transferrable colistin resistance, 
including two multiplex polymerase chain reactions (PCR) for screening for the presence of 
mcr-1 to mcr-5 (78) and mcr-6 to mcr-9, respectively (79). 

It should be noted that a negative result in a PCR molecular test cannot be used to predict 
susceptibility to colistin, because the test cannot exclude the presence of chromosomal 
mechanisms of resistance or even of novel mcr genes that are not included in the test. As 
evidence of this limitation, high rates of colistin resistance are reported among strains of 
K. pneumoniae producing carbapenemase in Brazil and Italy but which lack mcr genes (80). 
In these settings, a negative PCR result for mcr genes would have poor predictive value 
for a colistin-susceptible phenotype. Whole-genome sequencing would allow screening 
for mcr genes and known chromosomal mutations that confer colistin resistance (81). 
Bioinformatics analysis could be conducted with, among others (82), the Center for 
Genomic Epidemiology Web tools (83), and ResFinder 4 (81, 84). Although the sensitivity and 
negative predictive value would be affected by inclusion of strains with novel mechanisms 
of resistance, this is the most comprehensive method for detecting all currently known 
putative colistin resistance mechanisms. It would also enable retrospective analysis of 
sequencing data as new resistance mechanisms are described. 

Whatever the molecular method used, it is critically important to ensure that the PCR either 
detects all currently known mcr genes or that the databases used to impute resistance 
mechanisms from whole-genome sequencing data are up to date. 

As our understanding of colistin resistance mechanisms improves, so will the concordance 
between phenotypic and genotypic test results. As for many other classes of antimicrobial 
agents, molecular testing may eventually offer an alternative to phenotypic testing for 
the surveillance of colistin resistance. Nevertheless, if the results are intended to guide 
clinical management, inference of phenotype based solely on a genotypic result may be 
valid only when the genotypic result is positive (i.e. mechanisms or genes detected), with a 
cautionary note that the resistance phenotype is likely but not guaranteed. If the results of 
the genotypic test are negative, no inference should be drawn about phenotype.

3.2 Genotypic methods
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In view of the many technical challenges to colistin susceptibility testing, clear strategies 
are required for clinical diagnosis, sampling and testing for surveillance. In local health 
care settings, colistin resistance should be tested if the recommended technology 
is available, and samples should be sent to laboratories with the necessary technical 
capacity if the technology is not available. The cost of shipping isolates is an important 
aspect to be considered in confirmatory testing. Testing should be performed on the 
following, recognising that intrinsically colistin-resistant genera are excluded: 

•	 carbapenem-resistant Enterobacteriaceae

•	 other Gram-negative bacteria resistant to carbapenems and, 

•	 when treatment with colistin must be considered 

Health care facilities with a high prevalence or outbreaks of infections caused by 
carbapenem-resistant and other multidrug-resistant Enterobacteriaceae and/or non-
fermenting bacteria such as Acinetobacter baumannii and P. aeruginosa, could consider 
conducting periodic surveys to assess the occurrence of colistin resistance to inform 
local antimicrobial use policies.

At the national level, at least one AMR reference laboratory should be established in 
each member state to monitor colistin resistance reliably, with appropriate controls and 
standardized methods. Such an AMR reference laboratory could perform confirmatory 
testing upon request from local laboratories. Samples for confirmatory testing should be 
selected carefully, with priority given to isolates suspected to have acquired transferrable 
(mcr-mediated) colistin resistance. A reasonable strategy for detecting mcr-mediated 
colistin resistance would be to screen for phenotypic resistance (for example, using selective 
agar plates, CHROMID® Colistin R agar, Superpolymyxin or CHROMagar COL-APSE) (67, 68, 
85, 86) followed by PCR to detect one or more of the mcr genes. Such molecular testing 
could be performed at a reference laboratory or at a WHO Collaborating Centre.
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Ideally, colistin susceptibility testing should be included in national plans for AMR 
surveillance. Countries with strong national AMR surveillance programmes and laboratory 
capacity could extend them to include monitoring for colistin resistance in bacteria 
isolated from food-producing animals and from food and environmental samples, at 
least periodically.

Currently, the detection of colistin resistance is too technically complicated to recommend 
as a phenotypic screening method for resource-limited settings. It is therefore essential 
that laboratories store isolates suspected of being colistin-resistant and collaborate 
with AMR reference laboratories and/or WHO Collaborating Centres to confirm colistin 
resistance and determine the possible presence of mcr genes. 

The GLASS protocol (73) for sample-based surveillance is recommended for colistin 
susceptibility testing. In sample-based surveillance, case-finding is focused on priority 
specimens sent routinely to laboratories for clinical purposes. In addition, epidemiological 
information should be clearly linked to microbiological information for each sample and the 
standard AMR indicators recorded for positive cultures. The sample-based approach allows 
acquisition of information on the proportion of susceptible, intermediate and resistant 
isolates and the total number of patients sampled, making it possible to deduce the rates 
or frequencies of specific types of resistance in the tested population. Information on the 
incidence of this type of resistance among tested patients could provide an indication of 
the extent of colistin resistance in the population. The sample population must be carefully 
defined and described in any report in order not to overestimate resistance rates if only 
highly resistant strains are tested.
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