Anopheles stephensi at a glance

Anopheles stephensi is a mosquito species that is capable of transmitting both *Plasmodium falciparum* and *P. vivax* malaria parasites. It was originally native to South Asia and parts of the Arabian Peninsula but has been expanding its range over the last decade, with detections reported in Djibouti (2012), Ethiopia and Sudan (2016), Somalia (2019), Nigeria (2020) and Ghana and Kenya (2022). To date, it remains unclear when and via which route these countries were invaded. Although *An. stephensi* has likely spread to other African countries, it has yet to be detected as systematic, large-scale surveillance of the vector is still in its infancy.

Anopheles stephensi has the capacity to thrive in urban and man-made environments, setting it apart from the other main mosquito vectors of malaria that primarily breed in naturally occurring waterbodies in rural areas. Where *An. stephensi* has been reported in Africa, it has been found to be resistant to many of the insecticides used in public health, posing an added challenge to its control.

The invasion of *An. stephensi* in sub-Saharan Africa – where the burden of malaria is highest and over 40% of the population lives in urban environments – is particularly worrying. Since 2012, *An. stephensi* is thought to have contributed to a resurgence of malaria in Djibouti City and at least one outbreak of the disease in Ethiopia. While the overall contribution of *An. stephensi* to malaria transmission in the region is unclear, the rapid growth of many African cities, coupled with the invasion and spread of this highly efficient and adaptable malaria vector, could undermine the gains made in reducing the burden of the disease.
Modelling the potential impact of *Anopheles stephensi*

Recent mathematical modelling studies have attempted to show how and where *An. stephensi* might be spreading, and the potential implications for malaria transmission and control in Africa. One study projected that *An. stephensi* could put an additional 126 million people in Africa at risk of malaria if the mosquito vector were to spread unchecked. Another study estimated that the number of malaria cases in Ethiopia could increase by 50% if *An. stephensi* were to spread to all receptive areas. However, these models are based on assumptions that have not been fully validated in the African context, and any results should be interpreted with caution.

Malaria hits hardest in the African Region

In 2021, the vast majority of all malaria cases (95%) and deaths (96%) were found in the WHO African Region. Young African children bear the brunt of the disease: nearly 80% of all malaria deaths in the region are among children under the age of 5. Many African countries with moderate to high malaria transmission saw a significant reduction in their malaria burden between 2000 and 2015. However, the rate of progress has levelled off in recent years, and disruptions to malaria services during the COVID-19 pandemic further jeopardized malaria control efforts in the region.

In 2021 the WHO African Region reported

247 million

NEW MALARIA CASES

619 000

MALARIA-RELATED DEATHS
WHO initiative to stop the spread of Anopheles stephensi in Africa

To support an effective response to An. stephensi on the African continent, WHO launched an initiative in September 2022 aimed at:

Increasing collaboration
National malaria control programmes, researchers, funders, and other actors conducting surveillance, research and control of An. stephensi must collaborate effectively to ensure that knowledge is shared, resources are used optimally, and key activities are prioritized. As An. stephensi has the potential to spread quickly, cross-border collaboration is essential, and countries should work together to ensure an effective regional approach.

Strengthening surveillance
Entomological surveillance can determine the extent of the spread of An. stephensi and its role in transmission; it is essential to target specific control measures and assess their impact. Human malaria case surveillance should be used to investigate the potential impact of the vector’s presence on malaria, particularly in urban areas. Such surveillance might provide an indication of the presence of An. stephensi in areas where it has not yet been detected.

Improving information exchange
Information on the presence of An. stephensi, as well as on successes and failures in attempts to control the vector, needs to be documented and shared widely and rapidly – at both national and international levels – to determine best practices and inform the response across invaded areas.

Developing guidance
National malaria control programmes need evidence-based guidance on the appropriate ways to conduct surveillance, implement control measures, develop by-laws, and devote resources to their response to An. stephensi. WHO has provided a preliminary set of recommendations in its 2023 vector alert. This guidance will be reviewed and, where appropriate, updated based on best practices and other evidence identified as part of the regional initiative.

Prioritizing research
It will be important to evaluate the impact of vector control interventions, and particularly new tools, against An. stephensi. Conducting research focused on An. stephensi will enable programmes to find better ways of responding to this invasive vector and of integrating control efforts with those targeted at other mosquito vectors.
Building and maintaining an integrated response

National responses to An. stephensi should be part of a comprehensive response to malaria vectors, guided by the WHO Global technical strategy for malaria 2016–2030. Where feasible, integration with efforts to control other vector-borne diseases should be explored, as for example in the area of breeding site surveillance in urban and peri-urban areas. The WHO Global Vector Control Response 2017–2030 provides a framework for investigating and implementing such integration across vector-borne diseases.

Tracking the spread of Anopheles stephensi

The WHO Malaria Threats Map features a dedicated section on invasive vectors, including An. stephensi. All confirmed reports of the presence of An. stephensi should be reported to WHO to enable an open sharing of data and an up-to-date understanding of the vector’s distribution and spread. This knowledge will ultimately provide a basis to assess the effectiveness of any efforts to control or eliminate An. stephensi.

While the feasibility of these strategies is not yet known when it comes to An. stephensi in Africa, it is essential that action be taken to build an evidence base to assess their validity while responding to the task at hand of halting the spread of this invasive vector across Africa.

Strategies against invasive vectors

Generally, in responding to invasive species, three sequential approaches can be considered. By systematically evaluating these approaches – starting with the feasibility, efficacy and impact of control interventions – an evidence-based strategy can be built.

1. Control
 Accepting that the species has invaded certain areas, and controlling it to mitigate a potential increase in the malaria burden where it is present.

2. Containment
 Allowing the species to remain in a certain area but conducting surveillance and intensive control, particularly at the fringes, to prevent further spread.

3. Elimination
 Eliminating the species from the invaded area by building on efforts made under strategies 1 and 2.

WHO initiative to stop the spread of Anopheles stephensi in Africa, 2023 update

© World Health Organization 2023. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO licence.