Control, elimination, and eradication efforts for neglected tropical diseases

World Health Organization
African Region

Universal Health Coverage/Communicable and Noncommunicable Diseases
Ending disease in Africa: control, elimination, and eradication efforts for neglected tropical diseases, scoping review of the literature in the WHO African Region since 1990

UHC/UCN Cluster
World Health Organization
Regional Office for Africa
Brazzaville • 2023
Acknowledgements

This report was prepared by Abbie Barry, Adriana Campos and Caitlin Wolfe, as part of their scoping review of neglected tropical diseases in the World Health Organization Africa Region since 1990. The scoping review was conceptualized and coordinated by Benido Impouma and Bridget Farham.

Lead writers
Abbie Barry
Adriana Campos
Caitlin Wolfe

Reviewers
The final draft was review by the following experts (listed alphabetically):
Dorothy Achu (TVD Team Lead)
Elizabeth Juma (ESPEN Team Lead) and the ESPEN team
Akpaka Kalu (Strategic Policy and Planning Team Lead)

Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ESPEN</td>
<td>Expanded Special Project on Elimination of Neglected Tropical Diseases</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>KAP</td>
<td>knowledge, attitudes and practice</td>
</tr>
<tr>
<td>MDA</td>
<td>mass drug administration</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>NTD</td>
<td>neglected tropical diseases</td>
</tr>
<tr>
<td>PEP</td>
<td>post-exposure prophylaxis</td>
</tr>
<tr>
<td>PREP</td>
<td>pre-exposure prophylaxis</td>
</tr>
<tr>
<td>PRISMA</td>
<td>Preferred Reporting Items for Systematic Reviews and Meta-Analyses</td>
</tr>
<tr>
<td>PROSPERO</td>
<td>International Prospective Register of Systematic Reviews</td>
</tr>
<tr>
<td>SAFE</td>
<td>surgery, antibiotics, facial cleanliness, environmental improvements</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goal</td>
</tr>
<tr>
<td>STH</td>
<td>soil-transmitted helminths</td>
</tr>
<tr>
<td>UHC</td>
<td>universal health coverage</td>
</tr>
<tr>
<td>WASH</td>
<td>water, sanitation and hygiene</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Executive Summary

Neglected tropical diseases (NTDs) are a category of chronic, disabling, and at times disfiguring diseases and conditions that occur most commonly in the setting of extreme poverty. Historically, NTDs have received less attention and funding when compared to other diseases occurring in the same regions of the world. Several NTDs have internationally agreed upon targets for their control, elimination, and eradication. Nineteen countries in the WHO African Region have successfully eliminated at least one NTD, however recent gap analyses identified moderate to severe gaps across technical, strategy and service delivery, and enabling factors. This report summarizes the findings of a scoping review of published literature undertaken to highlight control, elimination, and eradication efforts towards NTDs across the WHO African Region over the last 30 years.

This systematic scoping review investigated the state of control, elimination, and eradication of NTDs in the 47 Member States of WHO African Region. Peer-reviewed publications on NTDs relevant to the African Region from January 1990 to December 2022 were identified through PubMed, Web of Science, and the Cochrane database. Technical reports and guidance documents from WHO, UN, partner websites and publications, academic and research institutions were sought and reviewed. Further, availability of country-specific multi-year NTD master plans were documented. The purpose of these efforts was to find relevant technical and guidance documents on the control, elimination, and eradication of NTDs in the WHO African Region.

Four hundred and eighty peer-reviewed articles were included in this scoping review, along with six Cochrane systematic reviews and 134 technical reports or programme evaluations. Peer-reviewed articles were categorized by thematic area of focus, study location, funding entity, and NTD. The availability of a national multi-year strategic plan for NTDs was also documented for each country in the WHO African Region. The two years from 2020 to present day saw the same if not more publications compared to the 2010 decade. The main themes of most included articles were general challenges, intervention outcomes and risk factors.

This report provides a description of the published literature focusing on NTD control, elimination, and eradication in the WHO African Region since the 1990s. In addition to the focus on peer-reviewed literature, it is important to also investigate and discuss implementation of NTD control programmes in the region, as there is a need to standardize the diagnostic tools, MDA campaigns, and monitoring and evaluation activities for NTD programmes. Such standardization will allow for improved comparisons of NTD elimination, eradication, and control efforts, both within countries and between countries. A more integrated approach – rather than focusing on specific diseases, individually – can maximize the impact of available resources. Additionally, more attention is needed on NTD elimination, eradication, and control efforts among mobile or displaced populations, as these important subpopulations may be a source of re-emergence or recrudescence as countries move to interrupt transmission. Similarly, there is a need to address the NTD elimination, eradication, and control efforts in areas that are hard to reach, either due to remoteness or security concerns. Further, the establishment of academic partnerships or regional centers of excellence could be beneficial.

The findings from this review can contribute to regional strategy and position to further NTD control, elimination, and eradication initiatives and contribute to the scientific evidence base generated within the African continent.
Neglected tropical diseases (NTDs) are a category of diseases and conditions that occur most commonly in the setting of extreme poverty, such as among the rural poor and disadvantaged urban populations [1,2,3]. These chronic, disabling, and at times disfiguring diseases have, historically, received less attention and funding than other diseases occurring in the same regions of the world [4]. With the exception of Chagas disease, all remaining NTDs are prevalent in World Health Organization (WHO) African Region, accounting for 40% of the global NTD burden [2] as of 2022.

Several NTDs have internationally agreed upon targets for their control, elimination, and eradication [5, 6]. The definition of control, elimination, and eradication as pertaining to NTDs are summarized below in Table 1. Beyond the documented control strategies that exist for each NTD, 10 NTDs have been targeted for either elimination or eradication: (i) schistosomiasis and soil-transmitted helminths (STHs), (ii) onchocerciasis, (iii) lymphatic filariasis, (iv) trachoma, (v) yaws, (vi) Guinea worm, (vii) African trypanosomiasis (for Trypanosoma brucei gambiense), (viii) visceral leishmaniasis, (ix) leprosy, and (x) Chagas disease [5, 6]. However, not all elimination or eradication targets include the WHO African Region [6].

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Reduction of disease incidence, prevalence, morbidity and/or mortality to a locally acceptable level as a result of deliberate efforts; continued interventions are required to maintain the reduction. Control may or may not be related to global targets set by WHO.</td>
</tr>
<tr>
<td>Elimination (interruption of transmission)</td>
<td>Reduction to zero of the incidence of infection caused by a specific pathogen in a defined geographical area, with minimal risk of reintroduction, as a result of deliberate efforts; continued action to prevent re-establishment of transmission may be required. Documentation of elimination of transmission is called verification.</td>
</tr>
<tr>
<td>Elimination as a public health problem</td>
<td>A term related to both infection and disease, defined by achievement of measurable targets set by WHO in relation to a specific disease. When reached, continued action is required to maintain the targets and/or to advance interruption of transmission. Documentation of elimination as a public health problem is called validation.</td>
</tr>
<tr>
<td>Eradication</td>
<td>Permanent reduction to zero of the worldwide incidence of infection caused by a specific pathogen, as a result of deliberate efforts, with no risk of reintroduction. Documentation of eradication is termed certification.</td>
</tr>
</tbody>
</table>
Over the last decade, the number of people requiring interventions against NTDs has slowly declined [8]. Nineteen countries in the WHO African Region have successfully eliminated at least one NTD, with Togo notably eliminating four: Guinea worm disease, lymphatic filariasis, human African trypanosomiasis (HAT) (*gambiense*), and trachoma [8]. However, gap analyses conducted in 2019 identified moderate to severe gaps across technical (e.g., scientific understanding and effective interventions), strategy and service delivery (e.g., operational and normative guidance, monitoring and evaluation, health care infrastructure and workforce) and enabling (e.g., advocacy and funding, and capacity and awareness building) areas [7].

When the Millennium Development Goals (MDGs) were established in 2000, the 6th goal was to combat HIV/AIDS, malaria, and other diseases [9]. NTDs fell under Goal 6’s “other diseases”—emphasizing the lack of specific focus or funding these diseases and conditions were receiving [10]. At the end of 2015, the MDGs were succeeded by the Sustainable Development Goals (SDGs) [11]. The SDGs focus on impact indicators, with SDG #3 (good health and wellbeing) sub-indicator focused exclusively on the number of people requiring interventions against neglected tropical diseases [12]. Additionally, the SDGs promote an integrated, multisectoral response [11], which aligns with the integrated approach leveraged against NTDs over the last decade [9, 13]. Further, interventions to address NTDs impact SDGs beyond health, including poverty reduction (SDG1), hunger (SDG2), education (SDG4), economic growth (SDG6), urban sustainability (SDG11), and resilience to climate change (SDG13) [13]. Further still, mass drug administration (MDA) campaigns against NTDs exemplify effective global partnerships (SDG17) [13].

Embedded within the SDGs is the focus on Universal Health Coverage (UHC) (SDG 3.8) [12]. This theme of ensuring that access to essential services is available to all who need them has been a hallmark of integrated NTD response efforts [13] and was a core tenet of WHO’s “Roadmap for implementation” of the 2012 NTD Strategy [6]. The WHO Regional Office for Africa (WHO AFRO) continues monitoring progress towards this goal, particularly in light of the disruptions caused by the COVID-19 pandemic, with disruptions to NTD services reported throughout 2020 and 2021 [14].

Encouragingly, however, even with continued population growth the percentage of people requiring NTD interventions in the WHO African Region decreased to 35.3% of the global total as of January 2023 [8], from 40% in 2022 [2]. Continued investments [15] and new partnerships [16] continue to fuel NTD control, elimination, and eradication efforts across the region. Building on prior decades of success and lessons learned, Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030 was endorsed at the World Health Assembly in 2020 [7]. Additionally, *Ending the neglect to attain the Sustainable Development Goals: a sustainability framework for action against neglected tropical diseases 2021–2030* was released in 2021 as a systematic method for identifying and harnessing synergies within NTD programmes, throughout the health system and across sectors to reach the targets for control, elimination, and eradication of NTDs [17]. Depending on the disease, noted gaps exist in scientific understanding of infection processes, epidemiology, animal reservoirs; capacity building and awareness among the health workforce; and advocacy and funding.

Following the suggested use of the sustainability framework [17], the preliminary results of a scoping review of published literature that was undertaken to highlight the efforts made towards the control, elimination, and eradication of NTDs across the WHO African Region over the last 30 years are presented here. This review explored the state of published literature focusing on NTD control, elimination, and eradication efforts; current technical reports and guidance documents; and funders of NTD control, elimination, and eradication research efforts. Aligned with the global emphasis on and efforts towards health and disease control in the buildup to the Millenium Development Goals (MDGs), this review summarizes the state of the science from January 1990 through December 2022. The findings from this preliminary review and subsequent report can contribute to regional strategy and position to further NTD control, elimination, and eradication initiatives and contribute to the scientific evidence base generated within the African continent.
Methods

This systematic scoping review investigated the state of control, elimination, and eradication of NTDs in the 47 Member States of WHO African Region. NTDs relevant to the African Region were included in the search strategy. This scoping review, conducted by a team of three consultants, is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the PRISMA-ScR extension. The International Prospective Register of Systematic Reviews (PROSPERO) does not accept protocols for scoping reviews; therefore, the protocol for this review was not registered.

Peer reviewed published literature

Search strategy

Comprehensive search strategies were created for PubMed, Cochrane, and Web of Science databases and included (i) scientific and common names for the NTDs of interest, (ii) the 47 member states of the WHO African Region, and (iii) control, elimination, and eradication keywords. The complete list of included diseases is provided in Annex A. Disease conditions were used instead of specific pathogen names (e.g., “schistosomiasis” or “bilharzia” instead of “schistosome or schistosoma”) to target articles focused on disease control, elimination, and eradication efforts among human populations instead of pathogen-focused laboratory studies. Of note, the search strategy was constructed to be intentionally broad and did not restrict for specific types of interventions for disease control, elimination, and eradication so as to capture as many relevant articles as possible. Searches of the literature were conducted on 3 December 2022 and again on 27 February 2023 with a custom date restriction from 1 January 1990 through 31 December 2022. Exported search results generated from the three databases were compiled in Microsoft Excel and deduplicated by title, year, and DOI. The full search strategies employed in each database are available in Annex B.
Inclusion and exclusion criteria

Two reviewers conducted title and abstract screening and the full-text review to assess the suitability of each paper result, with discordant results assessed by a third reviewer. The inclusion criteria for a full-text review were intentionally broad: the study setting must have included a member state of the WHO African Region and focused on an NTD of interest. All abstracts meeting these two qualifications were pulled for full-text review and assessed for final inclusion. During the full-text review process, exclusion criteria included the following reasons: (i) not focused on locations in the WHO African Region, (ii) not focused on one of the NTDs of interest, or (iii) not focused on elimination, eradication, or control efforts (e.g., commentaries or letters to editors, highly theoretical papers, etc.), (iii) articles focused on modelling or laboratory studies without field validation or reported application.

Extracting key results

Included articles were reviewed by two reviewers for NTD of interest, location, study type, study time period, study focus (e.g., MDA, health education intervention, etc.), and categories of information explored in each study (e.g., post-intervention prevalence, risk factors for NTD, social/cultural opinions of intervention, KAP study [knowledge, attitude, and practice]) based on the study objectives and methodology. Table 2 shows the thematic categories of information extracted during the full-text review. Articles that presented results from programme evaluations and or reviews of technical programmes were moved into the technical reports category and summarized separately.

Table 2: Thematic categories of information collected during full-text review

<table>
<thead>
<tr>
<th>Cost analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health education or behaviour</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Case management or treatment-based interventions</td>
</tr>
<tr>
<td>Environmental modification or vector control</td>
</tr>
<tr>
<td>MDA</td>
</tr>
<tr>
<td>SAFE</td>
</tr>
<tr>
<td>WASH</td>
</tr>
<tr>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td>Modelling</td>
</tr>
<tr>
<td>Other*</td>
</tr>
<tr>
<td>Prevalence or risk factors</td>
</tr>
<tr>
<td>Programme evaluation</td>
</tr>
<tr>
<td>Surveillance</td>
</tr>
<tr>
<td>Vaccination (animals & human)</td>
</tr>
</tbody>
</table>

*Studies that fell outside the pre-determined thematic categories were classified as “Other”
Thematic analysis of main themes and challenges

The discussion section of the included articles provided information on the main themes and challenges discussed in each article, and this information was extracted during either second or tertiary review. The main themes and challenges for articles included in the 2-3 most represented categories for each disease or group of diseases (e.g., Guinea worm: MDA, Guinea worm: vector control, Multiple NTDs: MDA, etc.) were compiled from the full-text data extraction table were consolidated for qualitative analysis to identify the 3-5 most common sub-themes using NVIVO [18]. Table 3 lists the disease categories used for the thematic analyses of main themes and challenges. Each consolidated list of main themes and challenges for each disease category were reviewed by two reviewers.

<table>
<thead>
<tr>
<th>NTD</th>
<th>Category</th>
<th>NTD</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea worm</td>
<td>Non-intervention survey</td>
<td>Onchocerciasis</td>
<td>MDA</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>Vector</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Human African trypanosomiasis</td>
<td>Non-intervention survey</td>
<td>Rabies</td>
<td>Vaccination campaign</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td></td>
<td>Non-intervention survey</td>
</tr>
<tr>
<td>Least reported*</td>
<td>Non-intervention survey</td>
<td>Schistosomiasis</td>
<td>Health education or behaviour</td>
</tr>
<tr>
<td></td>
<td>Case management</td>
<td></td>
<td>MDA</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>MDA</td>
<td>Soil-transmitted helminths</td>
<td>Non-intervention survey</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td></td>
<td>MDA</td>
</tr>
<tr>
<td>Multiple NTDs**</td>
<td>MDA</td>
<td>Trachoma</td>
<td>MDA</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>Non-intervention survey</td>
</tr>
</tbody>
</table>

* Diseases with fewer than 5% of the included studies were grouped together as “Least reported.” Diseases in this group included Buruli ulcer, chikungunya, echinococcosis, leishmaniasis, leprosy, loiasis, scabies, and yaws.

** Studies focused on two or more NTDs.

Abbreviations: MDA = mass drug administration; NTDs = neglected tropical diseases
The purpose of the thematic analysis was to identify the 3-5 main themes that were most present for each disease category. Table 4 shows the complete list of key main themes and related sub-themes, identified during the full-text reviews, that were included in the thematic analysis. Percent agreement and Cohen’s kappa were calculated to determine the agreement between reviewers on the most-identified 3-5 main themes for each disease category.

Table 4: Main themes and sub-themes used for thematic analysis

<table>
<thead>
<tr>
<th>Adverse events</th>
<th>General challenges</th>
<th>Laboratory and diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of adverse events</td>
<td>Budgets</td>
<td>Genetic testing, mutations, resistance related to CBE</td>
</tr>
<tr>
<td>Prevention of adverse events</td>
<td>Hard to reach areas or accessibility issues</td>
<td>Testing, diagnostics, serological assays, etc.</td>
</tr>
<tr>
<td>Case-management</td>
<td>Health systems or structures</td>
<td></td>
</tr>
<tr>
<td>Guinea worm extraction</td>
<td>Incomplete data</td>
<td>Risk factors</td>
</tr>
<tr>
<td>Rabies PEP</td>
<td>Intervention acceptance</td>
<td>Behavioural</td>
</tr>
<tr>
<td>Rabies Post-vaccination titre levels</td>
<td>Knowledge gaps</td>
<td>Environment</td>
</tr>
<tr>
<td>Treatment</td>
<td>Limited human or financial resources</td>
<td>Gender or sex</td>
</tr>
<tr>
<td>Coendemicity</td>
<td>Maintaining post-intervention results/outcome</td>
<td>Prognostics for treatment compliance</td>
</tr>
<tr>
<td>Loiasis</td>
<td>Migration, movement, etc.</td>
<td>Sociodemographic or socioeconomic</td>
</tr>
<tr>
<td>Onchocerciasis & lymphatic filariasis</td>
<td>Programme limitations</td>
<td>Transmission</td>
</tr>
<tr>
<td>Schistosomiasis & STHs</td>
<td>Signs</td>
<td></td>
</tr>
<tr>
<td>Community health workers</td>
<td>Supplies and logistics</td>
<td></td>
</tr>
<tr>
<td>CHW acceptance by community</td>
<td>Health Education, Behaviour, Perspectives, & KAP</td>
<td>SAFE (trachoma only)</td>
</tr>
<tr>
<td>CHW education</td>
<td>Health behaviour</td>
<td>Statistical or GIS/spatial modelling</td>
</tr>
<tr>
<td>CHW experiences (their own)</td>
<td>Health education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participants perspectives</td>
<td></td>
</tr>
<tr>
<td>Cost-analysis</td>
<td>Innovations</td>
<td></td>
</tr>
<tr>
<td>Cost of programme</td>
<td>Machine learning</td>
<td>Surveillance system</td>
</tr>
<tr>
<td>Projected costs</td>
<td>New diagnostics</td>
<td>Active case finding</td>
</tr>
<tr>
<td>Projected savings</td>
<td>Novel approaches</td>
<td>Surveillance to system performance</td>
</tr>
<tr>
<td>Saved costs</td>
<td></td>
<td>Testing of Creating Surveillance System</td>
</tr>
<tr>
<td>COVID-19 related themes</td>
<td>Intervention effectiveness</td>
<td></td>
</tr>
<tr>
<td>Decision making & programme planning</td>
<td>Successful intervention or outcomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-successful intervention or outcomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASH (excluding trachoma)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latinos (in general)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safe water use (for any use)</td>
<td></td>
</tr>
<tr>
<td>General approaches</td>
<td>Intervention outcomes (human & vector)</td>
<td></td>
</tr>
<tr>
<td>CDTI/approach or community-based initiative</td>
<td>Long-term MDA impact*</td>
<td></td>
</tr>
<tr>
<td>Comparing treatments</td>
<td>Morbidity related outcomes</td>
<td></td>
</tr>
<tr>
<td>Focus groups, qualitative work</td>
<td>Post-intervention prevalence</td>
<td></td>
</tr>
<tr>
<td>Integrated approach</td>
<td>Post-intervention prevalence (vector-specific)</td>
<td></td>
</tr>
<tr>
<td>Network analysis</td>
<td>Pre-intervention or baseline prevalence</td>
<td></td>
</tr>
<tr>
<td>HD estimation</td>
<td>Pre-intervention or baseline prevalence (vector-specific)</td>
<td></td>
</tr>
<tr>
<td>Rabies vaccinations</td>
<td>Recrudescence</td>
<td></td>
</tr>
<tr>
<td>Special populations (refugees, migrants, etc.)</td>
<td>Risk reduction</td>
<td></td>
</tr>
<tr>
<td>Extracting and coding funding data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally, study funding information was extracted via Web of Science where available or manually collected during the full text review. Funding information was categorized by the main funding organization (e.g., if a programme or entity is funded by the Bill & Melinda Gates foundation, the main funding organization was listed as the Bill & Melinda Gates Foundation). The number of individual funders were counted for each study, and studies that were funded by multiple grants under the same main funder were counted under the main funder. Main international funding agencies, government agencies, universities, and other large collaborations were identified by name. While pharmaceutical agencies often donate medications or make contributions towards studies, these were not considered monetary funders. However, since funder data was pre-populated in the Web of Science export, the pharmaceutical agencies were categorized as “Pharmaceuticals or Similar Industry” when this information was included. Addition categories explored were Governments and University/Academic Institutions.
Technical and guidance documents

In addition to searching the above-mentioned databases, a search of the WHO, UN, partner websites and publications, academic and research institutions was conducted. This search included websites and repositories of main NTD actors in the WHO African Region, including (i) the WHO Regional Office for Africa (WHO AFRO) publications [19], (ii) WHO AFRO’s Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) [20], (iii) Uniting to Combat NTDs [21], (iv) organizations focused on complex humanitarian emergencies in the WHO African Region for NTD guidance in these settings (United Nations High Commission for Refugees [UNHCR] [22], the International Organization for Migration [IOM] [23], and the Inter-Agency Standing Committee (IASC) [24]), (v) Africa Centers for Disease Control and Prevention (Africa CDC) [25], and (vi) Nigeria Centre for Disease Control (Nigeria CDC) [26]. Further, availability of country-specific multi-year NTD master plans [27] were documented. The purpose of these efforts was to find relevant technical and guidance documents on the control, elimination, and eradication of NTDs in the WHO African Region.
Results

Peer-reviewed published Literature

A total of 1268 results were retrieved from the search strategies for PubMed (n=784), Web of Science (n=939), and Cochrane (n=8), respectively. After deduplication and title and abstract screening, 780 articles were sought for retrieval. A total of 772 articles were assessed for final inclusion eligibility and 480 were included in this report. The PRISMA diagram in Figure 1 details the identification, screening, and inclusion process. The summary of the full text articles reviewed by disease type are presented in Table 5.

Figure 1. PRISMA diagram
772 full-text articles were reviewed and 176 (22.8%) were excluded, 116 (15.0%) were technical reports or programme evaluations as presented in Table 5. The reasons for exclusion among the 176 excluded studies are provided in Annex C. Four hundred and eighty (62.2%) articles met the inclusion criteria and were included in the analysis. The number of articles returned for the disease specific NTD is shown in Table 5. All NTDs were covered in included articles except snake bite envenoming and chromoblastomycosis or deep mycoses. Most studies (n=430) reported on one NTD, with the highest number of articles on Lymphatic filariasis 18.1% (n=78), trachoma 18.1% (n=78), schistosomiasis 17.9% (n=77) and onchocerciasis 16.0% (n=69). Of the included articles, 10.4% (n=50) investigated two or more NTDs. Studies that combined two or more NTDs in one article were mostly reporting on schistosomiasis and STHs (n=16). The NTDs with the least number of studies were echinococcosis (n=1), loiasis (n=1), scabies (n=1), and chikungunya (n=2). There was no study that only focused on Dengue in the included articles. The full list of included studies is provided in Annex D.

Table 5: Summary of full-text review*

<table>
<thead>
<tr>
<th>NTD of interest</th>
<th>Included N (%)</th>
<th>Technical report or programme evaluation N (%)</th>
<th>Excluded N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal African trypanosomiasis</td>
<td>--</td>
<td>--</td>
<td>4 (2.2)</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td>4 (0.8)</td>
<td>1 (0.9)</td>
<td>1 (0.5)</td>
<td>6 (0.8)</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>2 (0.4)</td>
<td>--</td>
<td>--</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>Dengue</td>
<td>--</td>
<td>--</td>
<td>2 (1.1)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>Echinococcosis</td>
<td>1 (0.2)</td>
<td>--</td>
<td>--</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Guinea worm</td>
<td>21 (4.4)</td>
<td>35 (30.2)</td>
<td>13 (7.0)</td>
<td>69 (8.8)</td>
</tr>
<tr>
<td>Human African trypanosomiasis</td>
<td>32 (6.7)</td>
<td>--</td>
<td>15 (8.1)</td>
<td>47 (6.0)</td>
</tr>
<tr>
<td>Human oesophagostomias</td>
<td>--</td>
<td>--</td>
<td>1 (0.5)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>3 (0.6)</td>
<td>--</td>
<td>2 (1.1)</td>
<td>5 (0.6)</td>
</tr>
<tr>
<td>Leprosy</td>
<td>7 (1.5)</td>
<td>2 (1.7)</td>
<td>7 (4.0)</td>
<td>16 (2.1)</td>
</tr>
<tr>
<td>Loiasis</td>
<td>1 (0.2)</td>
<td>--</td>
<td>1 (0.5)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>78 (16.3)</td>
<td>17 (14.7)</td>
<td>11 (6.3)</td>
<td>106 (13.7)</td>
</tr>
<tr>
<td>Multiple NTDs</td>
<td>50 (10.4)</td>
<td>8 (6.9)</td>
<td>31 (16.8)</td>
<td>89 (11.4)</td>
</tr>
</tbody>
</table>
Table: Included, Excluded, and Total Articles by NTD of Interest

<table>
<thead>
<tr>
<th>NTD of interest</th>
<th>Included N (%)</th>
<th>Technical report or programme evaluation N (%)</th>
<th>Excluded N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onchocerciasis</td>
<td>69 (14.4)</td>
<td>18 (15.5)</td>
<td>41 (23.3)</td>
<td>128 (16.6)</td>
</tr>
<tr>
<td>Podoconiosis</td>
<td>--</td>
<td>--</td>
<td>1 (0.5)</td>
<td>1 (0.13)</td>
</tr>
<tr>
<td>Rabies</td>
<td>30 (6.3)</td>
<td>11 (9.5)</td>
<td>2 (1.1)</td>
<td>43 (5.5)</td>
</tr>
<tr>
<td>Scabies</td>
<td>1 (0.2)</td>
<td>--</td>
<td>1 (0.5)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>77 (16.0)</td>
<td>12 (10.3)</td>
<td>17 (9.7)</td>
<td>106 (13.7)</td>
</tr>
<tr>
<td>Soil-transmitted helminths</td>
<td>21 (4.4)</td>
<td>4 (3.5)</td>
<td>11 (6.3)</td>
<td>36 (4.7)</td>
</tr>
<tr>
<td>Trachoma</td>
<td>78 (16.3)</td>
<td>7 (6.0)</td>
<td>12 (6.5)</td>
<td>97 (12.4)</td>
</tr>
<tr>
<td>Yaws</td>
<td>5 (1.0)</td>
<td>1 (0.9)</td>
<td>3 (1.6)</td>
<td>9 (1.2)</td>
</tr>
<tr>
<td>Total</td>
<td>480 (100)</td>
<td>116 (100)</td>
<td>176 (100)</td>
<td>772 (100)</td>
</tr>
</tbody>
</table>

Abbreviations: NTDs = Neglected tropical diseases
Zero values displayed as “--” for easier viewing
* Does not include the 8 Cochrane articles; for detailed list of exclusion reasons including Cochrane database see Annex F.1.

Figure 2 demonstrates the number of included articles by publication year. The articles included in this review were published from 1992 (n=1) to 2022 (n=59), with the number of publications steadily increasing from the early 2000s onward. Most of the studies included in this review were published in 2022 (n = 59).
Out of the 480 included articles, 105 were interventional studies and 375 were non-interventional. Forty-one (39.0%) of the 105 interventional studies were non-randomized intervention/control trials, 21 (20%) were community randomized trials and 20 (19.0%) were randomized control trials. The most commonly represented NTDs in the interventional studies were schistosomiasis (22.0%), trachoma (18.1%), human African trypanosomiasis (12.4%), lymphatic filariasis (12.4%) and onchocerciasis (7.6%). There were no interventional studies on chikungunya, echinococcosis and leishmaniasis. Most of the intervention studies were conducted in United Republic of Tanzania (19.0%), Ethiopia (11.4%) and Nigeria (9.5%).

Figure 3. Count of included studies per country
The location of focus or study setting of the included articles are presented in Table 6. Most study settings were in one country (n=427), however, out of the 480 included articles, 9.4% (n=45) focused on locations in two or more countries both in and out of the WHO African Region. Out of the 45, 34 focused on locations in the WHO African Region only and 11 included countries outside of the region. Additionally, 1.0% (n=5) were global in scope and the study setting was unclear for 3 articles (0.6%). Out of the 427 articles that focused on locations in one country, the United Republic of Tanzania (16.2%) was the location of the study setting in the highest number of included articles, followed by Ethiopia (10.1%), Nigeria (9.6%), Kenya (9.4%), Ghana (7.5%), Cameroon (7.3%) and Uganda (6.3%). Out of the 69 articles that focused on studies conducted in the United Republic of Tanzania, 58 articles focused on studies that were conducted in mainland Tanzania and 11 in Zanzibar. Among the included articles, only article each focused on locations in Angola, Lesotho, Liberia, Madagascar, Namibia, Sudan, and São Tomé and Príncipe. None of the included articles focused on locations in Algeria, Botswana, Cabo Verde, Central African Republic, Comoros, Congo, Eritrea, Eswatini, Guinea Bissau, Mauritania, Mauritius, or Seychelles. Figure 3 demonstrates the total number of articles from studies conducted in countries in the WHO African Region.

As presented in Table 6, two of the four studies on Buruli ulcer were conducted in Ghana, one in Cameroon and one in Côte d’Ivoire. The only study focused on echinococcosis was conducted in Sudan. The location or study setting of the first study on Chikungunya was in Senegal and the second was a multi-country study that included Kenya and Comoros. Chad had the largest share of articles focused on Guinea worm (57.1%, n=12) followed by Nigeria (19.0%, n=4). Among articles that focused on human African trypanosomiasis, 25% (n=8) and 15.6% (n=5) of were conducted in Democratic Republic of Congo and Uganda, respectively. Other countries that were represented by at least one article related to the elimination and/or eradication of human African trypanosomiasis included Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Ethiopia, Ghana, Guinea, Nigeria, South Sudan, Zambia, and Zimbabwe. The two included articles that focused on leishmaniasis were conducted in Ethiopia and Kenya.

Of the seven articles that focused on leprosy, one of each study was conducted in Burkina Faso, Cameroon, Ethiopia, Mozambique, Nigeria, and Uganda. Of note, the last leprosy study was a multi-country study including countries in and out of the WHO African Region. Most articles focusing on lymphatic filariasis were based on studies conducted in United Republic of Tanzania (20.5%; n=16), Ghana (16.7%; n=13), Kenya (14.1%; n=11) and Nigeria (12.8%; n=10). For onchocerciasis, most articles were based on studies conducted in Cameroon (31.9%; n=22) and Uganda (14.5%; n=10). Of note, 10.1% (n=7) of the onchocerciasis articles were from studies conducted in two or more countries (multiple countries). Most of the articles on rabies were from studies conducted in Nigeria (13.3%; n=4), United Republic of Tanzania (13.3%; n=4), Kenya (10.0%; n=3), and South Africa (10.0%; n=3). Of note, 13.3% (n=4) of rabies articles were from studies conducted in more than one country. The only article focusing on scabies was conducted in Ethiopia.
Among the articles focusing on schistosomiasis, 28.6% (n=22) were from studies conducted in the United Republic of Tanzania, 11 of which were conducted in mainland Tanzania and 11 in Zanzibar. An additional 18.2% (n=14) of articles focusing on schistosomiasis were based on studies conducted in Kenya, while at least one article focusing on schistosomiasis control and elimination originated from studies in 19 countries. The majority of articles on the control and elimination of soil-transmitted helminths were from studies conducted in Kenya (%; n=7). Other countries where articles reporting the efforts towards the control and elimination of soil transmitted helminths were published and included in this report were Benin, Cameroon, Ethiopia, Ghana, Mozambique, Nigeria, Sierra Leone, United Republic of Tanzania (mainland) and Zimbabwe. Ethiopia (34.6%; n=27) had the highest number of trachoma articles, followed by United Republic of Tanzania (mainland) (23.1%; n=18) and Nigeria (10.1%; n=8). The articles on Yaws were from studies conducted in Ghana. Two out of the four (50%) were conducted in Ghana, the other two were in multiple countries within and outside of the WHO African Region.

Table 6: Number of articles by NTD and study setting

<table>
<thead>
<tr>
<th>Location</th>
<th>Buruli ulcer</th>
<th>Chikungunya</th>
<th>Echinococcosis</th>
<th>Guinea worm</th>
<th>Human African trypanosomiasis</th>
<th>Leishmaniasis</th>
<th>Leprosy</th>
<th>Loiasis</th>
<th>Lympathic filariasis</th>
<th>Multiple NTDs</th>
<th>Onchocerciasis</th>
<th>Rabies</th>
<th>Scabies</th>
<th>Schistosomiasis</th>
<th>Soil-transmitted helminths</th>
<th>Trachoma</th>
<th>Yaws</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Benin</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Burundi</td>
<td>–</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cameroon</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Chad</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>–</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Gabon</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Gambia</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ghana</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Kenya</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>11</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>14</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesotho</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Liberia</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Madagascar</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Control, elimination, and eradication efforts for neglected tropical diseases

All included articles were stratified into one or more thematic or intervention areas related to the control, elimination, or eradication of NTDs, as shown in Table 7. Mass drug administration (MDA) was the most common thematic area, with the impact or effectiveness of MDA for the control and elimination of NTDs investigated in 159 articles, most of which were focused on Lymphatic filariasis (28.9%), onchocerciasis (20.1%), trachoma (17.0%) and schistosomiasis (13.8%). The second and third most common thematic areas among included articles were (i) non-intervention or survey related studies (n=99), and (ii) other thematic areas related to the control, elimination and/or eradication of NTDs (n=76). Of note, in the non-intervention or survey category, the most common sub-categories investigated risk factors associated with NTDs and/or NTD control, elimination and/or eradication (n=16; 16.2%), 12 (12.1%) articles were knowledge, attitude and practice studies and pre-intervention and baseline prevalence of the disease(s). Eight (8.1%) articles were on testing or creating disease surveillance systems. Out of the 99 articles in the non-intervention or survey category, trachoma (26.3%), rabies (15.1%) and Guinea worm (11.1%) were most represented. Of note in the other category, 24 (31.6) articles were focused on diagnostics for NTDs to better establish disease burden for appropriate action, 4 (5.3%) were on genetic testing, mutations, resistance related to control, elimination, and eradication of NTDs, and 3 (3.9%) were on cost-analysis and NTD morbidity related outcomes each. The remaining articles in the other category included studies that investigated community workers’ roles or NTD interventions’ effectiveness, programme planning or decision making etc. The NTDs most represented in the other category included schistosomiasis (19.7%) and onchocerciasis (17.1%).
Table 7: Thematic area of included articles by NTD

<table>
<thead>
<tr>
<th>Neglected tropical disease</th>
<th>Case-management for treatment based interventions</th>
<th>Health behavioural/environmental (e.g., WASH/SAFE)</th>
<th>Health knowledge/education (e.g., campaign, intervention)</th>
<th>MDA</th>
<th>Multiple focus</th>
<th>Non-intervention/Survey</th>
<th>Other</th>
<th>Statistical/GIS-modelling</th>
<th>Vaccination campaign</th>
<th>Vector or environmental modification (non-human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buruli ulcer</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Echinococcosis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Guinea worm</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Human African trypanosomiasis</td>
<td>3</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>–</td>
<td>11</td>
<td>–</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Leprosy</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Loiasis</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>46</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Multiple NTDs</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Onchocercias</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>32</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>Rabies</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Scabies</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Soil transmitted helminths</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Trachoma</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>27</td>
<td>4</td>
<td>26</td>
<td>7</td>
<td>1</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Yaws</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>7</td>
<td>13</td>
<td>159</td>
<td>35</td>
<td>99</td>
<td>76</td>
<td>27</td>
<td>13</td>
<td>31</td>
</tr>
</tbody>
</table>

Abbreviations: MDA = Mass drug administration; M&E = monitoring and evaluation; SAFE = Surgery, antibiotics, facial hygiene, and environmental change; WASH = Water, sanitation, hygiene and education.
Thirty-one articles investigated the effectiveness or impact of environmental modification or vector control interventions against NTDs, most of which were focused on human African trypanosomiasis (35.5%), onchocerciasis (22.6%), and lymphatic filariasis (19.4%). Twenty-seven articles presented results from modelling studies that used primary and/or secondary data to develop and validate a model to answer questions related to NTD control, elimination and/or eradication, including expected timelines to reach the different targets and how the combination of multiple interventions would contribute to accelerating their achievement. Twenty articles focused on case management and treatment. The least represented thematic areas of included articles were focused on health knowledge/education interventions (n=13), vaccination campaigns (n=13) and health behavioural or environmental interventions including WASH/SAFE interventions (n=7). While Table 7 demonstrates the thematic area by NTD, Table 8 demonstrates the thematic area by country of the articles included in this scoping review.

<table>
<thead>
<tr>
<th>Location</th>
<th>Case-management for treatment-based interventions</th>
<th>Health behavioural/education (e.g., WASH/SAFE)</th>
<th>Health knowledge/education (e.g., campaign, intervention)</th>
<th>MDA</th>
<th>Multiple focus</th>
<th>Non-intervention/Survey</th>
<th>Other</th>
<th>Statistical/GIS-modelling</th>
<th>Vaccination campaign</th>
<th>Vector or environmental modification (non-human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Benin</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Burundi</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cameroon</td>
<td>2</td>
<td>–</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Chad</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Eritrea</td>
<td></td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>17</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gabon</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gambia</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Ghana</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Guinea</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Kenya</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Location</td>
<td>Case-management for treatment-based interventions</td>
<td>Health behavioural/environmental (e.g., WASH/SAFE)</td>
<td>Health knowledge/education (e.g., campaign, intervention)</td>
<td>MDA</td>
<td>Multiple focus</td>
<td>Non-intervention/Survey</td>
<td>Other</td>
<td>Statistical/GIS-modelling</td>
<td>Vaccination campaign</td>
<td>Vector or environmental modification (non-human)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-----</td>
<td>----------------</td>
<td>------------------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Lesotho</td>
<td>-</td>
</tr>
<tr>
<td>Liberia</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madagascar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malawi</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mali</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Namibia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niger</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nigeria</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rwanda</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>São Tomé e Príncipe</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Senegal</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>South Africa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>South Sudan</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Sudan**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Togo</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uganda</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Zambia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: MDA = Mass drug administration; M&E = monitoring and evaluation; SAFE = Surgery, antibiotics, facial hygiene, and environmental change; WASH = Water, sanitation, hygiene and education.
Thematic analysis

Across all 28 categories for thematic analysis, general challenges were the most prevalent main theme (identified in 20 categories), followed by intervention outcomes (identified in 8 categories) and risk factors (identified in 7 categories), as shown in Table 9. The full list of most prevalent themes identified by both reviewers is available in Annex E. Reviewer agreement on the five most common main themes per category ranged from 72.7-100% (Cohen’s Kappa range 0.224-1).

Among the reported general challenges, common sub-themes included incomplete data, migration or human movement, programme limitations, accessibility issues (e.g., hard to reach areas), knowledge gaps, and intervention acceptance. Common sub-themes among intervention outcomes included post-intervention prevalence, long-term MDA impact, recrudescence, and morbidity-related outcomes. Common sub-themes among risk factors include transmission risk factors, behavioural risk factors, environmental risk factors, and reservoir risk factors. Of note, co-endemicity was commonly reported in articles discussing onchocerciasis, lymphatic filariasis, loiasis, schistosomiasis, and soil-transmitted helminths.

Table 9: Main themes identified by both reviewers per category

<table>
<thead>
<tr>
<th>NTD</th>
<th>Category (no. articles)</th>
<th>Top 3 main themes identified by both reviewers (listed alphabetically)</th>
<th>% Agreement</th>
<th>Cohen’s Kappa</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea worm</td>
<td>Non-intervention survey (12)</td>
<td>General challenges, Geographic or location trends, Risk factors</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Other (3)</td>
<td>General challenges, Risk factors, WASH (excluding trachoma, Cost analysis)</td>
<td>95.5%</td>
<td>0.867</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Vector (3)</td>
<td>General challenges, Vector-specific outcomes</td>
<td>95.5%</td>
<td>0.867</td>
<td><0.001</td>
</tr>
<tr>
<td>Human African trypanosomiasis</td>
<td>Non-intervention survey (10)</td>
<td>General challenges, Risk factors, Surveillance system</td>
<td>81.1%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>Vector (12)</td>
<td>General challenges, Vector-specific outcomes</td>
<td>81.1%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td>NTD</td>
<td>Category (no. articles)</td>
<td>Top 3 main themes identified by both reviewers (listed alphabetically)</td>
<td>% Agreement</td>
<td>Cohen’s Kappa</td>
<td>p-value</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>MDA (63)</td>
<td>Co-endemicity</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Other (10)</td>
<td>Co-endemicity</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>Vector (10)</td>
<td>Intervention outcomes</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vector-specific outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple NTDs</td>
<td>MDA (4)</td>
<td>Community health workers</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey (3)</td>
<td>Co-endemicity</td>
<td>86.4%</td>
<td>0.595</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>Other (5)</td>
<td>Cost analysis</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General challenges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>MDA (42)</td>
<td>Co-endemicity</td>
<td>100.0%</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Vector* (16)</td>
<td>Co-endemicity</td>
<td>81.8%</td>
<td>0.506</td>
<td>0.0051</td>
</tr>
<tr>
<td></td>
<td>Other (8)</td>
<td>Co-endemicity</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td>NTD</td>
<td>Category (no. articles)</td>
<td>Top 3 main themes identified by both reviewers (listed alphabetically)</td>
<td>% Agreement</td>
<td>Cohen’s Kappa</td>
<td>p-value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rabies</td>
<td>Vaccination campaign (15)</td>
<td>Case management, General approaches, General challenges, Case management, General approaches, General challenges</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey (16)</td>
<td>General challenges, Case management, General approaches, Case management, General approaches, General challenges</td>
<td>100.0%</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Health education or behaviour (15)</td>
<td>General challenges, Health education, behaviour, perspectives, KAP, Risk factors, General challenges</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>MDA* (41)</td>
<td>General challenges, Intervention outcomes, General approaches, Case management, General approaches, General challenges</td>
<td>72.7%</td>
<td>0.224</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>Other* (20)</td>
<td>Intervention outcomes, Laboratory & diagnostics, General approaches, Case management, General approaches, General challenges</td>
<td>72.7%</td>
<td>0.224</td>
<td>0.294</td>
</tr>
<tr>
<td>Soil-transmitted helminths</td>
<td>Non-intervention survey (11)</td>
<td>Health education, behaviour, perspectives, KAP, Innovations, General challenges, Case management, Risk factors</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Other (7)</td>
<td>Innovations, General approaches, Laboratory & diagnostics, programme planning & decision making, Case management, Risk factors</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>MDA (22)</td>
<td>Intervention outcomes, General approaches, Intervention coverage, Intervention outcomes, General challenges</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
</tr>
<tr>
<td>Trachoma</td>
<td>MDA (28)</td>
<td>General challenges, Intervention outcomes, General challenges, Case management, Risk factors, Intervention outcomes</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>Other (26)</td>
<td>General challenges, Intervention outcomes, General challenges, Case management, Risk factors</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey (10)</td>
<td>Innovations, General challenges, Intervention outcomes, Laboratory & diagnostics, General challenges</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
</tr>
</tbody>
</table>

*Diseases with fewer than 5% of the included studies were grouped together as “Least reported.” Diseases in this group included Buruli ulcer, chikungunya, echinococcosis, leishmaniasis, leprosy, loiasis, scabies, and yaws.

**Studies focused on two or more NTDs.

† Both reviewers agreed on two of the top 5 most prevalent main themes.
Cochrane Database

The specified search strategy for the Cochrane database returned 8 results, as shown in Annex F.1 and F.2. Three reviews focused on trachoma (Burton et al., 2015; Ejere et al., 2015; Rabiu et al., 2012), two focused on lymphatic filariasis (Taylor et al., 2022; Macfarlane et al, 2019), and one each focused on ascariasis (STH) (Conterno et al., 2020), diarrhoea and STHs (Majorin et al., 2019) and dental caries (Schwendicke et al., 2021). Schwedicke et al. (2021) was excluded during the title and abstract screening phase as the focus was not on one of the diseases of interest. Majorin, et al. (2019) was excluded during full-text review, as the articles included in this review from countries in the WHO African Region focused on general diarrhoeal and child growth outcomes rather than STH control, elimination, or eradication, or any outcomes specific to STHs.

Overall, the six included reviews focused on health education (hygiene promotion) and health behaviour (hygiene behaviour) (n=4), case management or treatment-based interventions (n=3), WASH, (n=3) and MDA (n=2). Across these six reviews, 48 articles focused on data from countries in the WHO African Region, where three countries represented the majority of study settings (United Republic of Tanzania [n=14], Ethiopia [n=9], and Kenya [n=7]). Only two articles were published before 1990. Of these 48 relevant articles, 13 (27.1%) were captured in the search strategy used for this review, and all 13 were included following full-text review. Among the included articles from the Cochrane reviews captured in this scoping review, most focused on MDA for Lymphatic filariasis. Of note, the search strategy for this review focused on control, elimination, and eradication of the diseases of interest, whereas most of the articles that not captured in this review focused on clinical efficacy treatment regimens or drug combinations.

Funders of research activities in the WHO African Region

Overall

There were over 200 unique funders listed in the included studies, ranging from individual donors to international NGOs and governments (see Annex G for full list). Sixty-three (5.93%) had missing funding data (labelled as “None or Not available”) and nine (0.82%) were labelled as “Unclear/unknown” (i.e., their funding organization was listed but the authors were unable to decipher the organization). If mentioned, pharmaceutical companies were kept, but were not included in the count for the top funders if present, since typically pharmaceutical donations are not considered funding. Since 1990, the top 5 entities mentioned as a source of funding for a peer-reviewed publication from the included studies were the Bill & Melinda Gates Foundation (n = 103), United States Agency for International Development (USAID) (n=66), Department for International Development (DFID) (n=65), US National Institutes of Health (n=52), and the World Health Organization (n=36). Table 10 displays the top 12 funding agencies (excluding categories such as “Not available”), their frequency, and their respective percentage. For the overall funder table individual universities and governments are categorized as “Universities” and “Governments”, respectively.
Table 10: Identified funding agencies and frequency in included articles

<table>
<thead>
<tr>
<th>Funding organization</th>
<th>Frequency</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>103</td>
<td>9.40%</td>
</tr>
<tr>
<td>United States Agency for International Development (USAID)</td>
<td>66</td>
<td>6.02%</td>
</tr>
<tr>
<td>UK Department for International Development (DFID)</td>
<td>65</td>
<td>5.93%</td>
</tr>
<tr>
<td>Governments</td>
<td>60</td>
<td>5.47%</td>
</tr>
<tr>
<td>Universities</td>
<td>53</td>
<td>4.84%</td>
</tr>
<tr>
<td>US National Institutes of Health</td>
<td>52</td>
<td>4.74%</td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td>36</td>
<td>3.28%</td>
</tr>
<tr>
<td>The Wellcome Trust</td>
<td>35</td>
<td>3.19%</td>
</tr>
<tr>
<td>UK Research and Innovation (UKRI)</td>
<td>28</td>
<td>2.55%</td>
</tr>
<tr>
<td>Carter Center</td>
<td>26</td>
<td>2.37%</td>
</tr>
<tr>
<td>European Union</td>
<td>26</td>
<td>2.37%</td>
</tr>
<tr>
<td>The Task Force for Global Health</td>
<td>23</td>
<td>2.10%</td>
</tr>
<tr>
<td>Special Programme for Research and Training in Tropical Diseases (TDR)</td>
<td>18</td>
<td>1.64%</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC)</td>
<td>18</td>
<td>1.64%</td>
</tr>
<tr>
<td>Coalition for Operational Research in Neglected Tropical Diseases (CORNTD)</td>
<td>15</td>
<td>1.37%</td>
</tr>
<tr>
<td>Sightsavers</td>
<td>13</td>
<td>1.19%</td>
</tr>
<tr>
<td>United Nations Children’s Fund (UNICEF)</td>
<td>10</td>
<td>0.91%</td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td>9</td>
<td>0.82%</td>
</tr>
<tr>
<td>Lions Club</td>
<td>8</td>
<td>0.73%</td>
</tr>
<tr>
<td>Children’s Investment Fund Foundation (CIFF)</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>Danish International Development Agency (DANIDA)</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>World Bank</td>
<td>7</td>
<td>0.64%</td>
</tr>
</tbody>
</table>

Funding summary by year

All included articles published in 1992, 1996, 2000, 2001, 2003, had no funding agencies listed. Annex H displays the entire list of funders by year (1990-2022). During 2000 to 2009, most articles were missing funders (n=11) and the top funders mentioned were the Wellcome Trust (n=4), US National Institutes of Health (n=3), Carter Center (n=3), Centers for Disease Control and Prevention (n=3), and government agencies (n=3). Pharmaceutical agencies were mentioned in 4 articles.

Figure 4 showcases the top 20 funders from 2000 to 2022. Throughout the first two decades of the 2000s, articles published between 2010 to 2019 reported more funding entities than articles published between 2000 to 2009 (Figure 4). While there are only three years’ worth of data relating to 2020 to 2022, it is evident that, in articles published during those three years, there are already a large number of funding agencies involved compared to the two previous decades. The Carter Center was listed as a funding entity in 12 articles published between 2010 to 2019 and was listed as a funding entity in 11 articles published between 2020 and 2022. Similarly, during the first three years of the 2020 decade, the European Union and the Coalition for Operational Research in Neglected Tropical Diseases (CORNTD) both surpassed the number of articles where they were listed as funding entities compared to articles published in the 2010 decade.
When considering the articles that provided funding information, most were focused on trachoma (20%), lymphatic filariasis (17%), Guinea worm (13%), onchocerciasis (12%), and schistosomiasis (12%) (Figure 5 shows rounded estimates). Articles exploring more than one NTD were categorized as “Multiple” in this illustration.
Excluding articles without clear funding information, the top 5 locations represented in the articles included in this review were the United Republic of Tanzania (14%), multi-country settings (11%), Kenya and Ethiopia tied for third place (9%), Nigeria and Cameroon tied for fourth place, and Ghana and Uganda tied for fifth place (Table 11). The entire list can be found in Annex I.
Control, elimination, and eradication efforts for neglected tropical diseases

Table 11: Common locations among articles with funding information

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Republic of Tanzania</td>
<td>14% (59)</td>
</tr>
<tr>
<td>Multiple countries</td>
<td>11% (44)</td>
</tr>
<tr>
<td>Kenya</td>
<td>9% (37)</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>9% (35)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>7% (30)</td>
</tr>
<tr>
<td>Cameroon</td>
<td>7% (27)</td>
</tr>
<tr>
<td>Ghana</td>
<td>6% (26)</td>
</tr>
<tr>
<td>Uganda</td>
<td>6% (25)</td>
</tr>
</tbody>
</table>

Funding summary by entity

The top two government funders by significant margins were the United States of America (including agencies such as USAID, CDC, NIH, etc.) and the United Kingdom government agencies (e.g., UKRI, DFID, etc.), listed n=152 and n=103 times, respectively. Meanwhile, the top three academic institutions listed were the University of Georgia (USA; n=7), Johns Hopkins University (USA; n=5), and Stanford University (USA) and Copenhagen University (Denmark) (n=3 for both).

Further, pharmaceutical agencies were listed 30 times in the included studies (Table 12). Pfizer (n=10) and GlaxoSmithKline (GSK) (n=8) were listed the most often.

Table 12: Pharmaceutical agencies Listed

<table>
<thead>
<tr>
<th>Pharmaceutical agency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer</td>
<td>10</td>
</tr>
<tr>
<td>GlaxoSmithKline (GSK)</td>
<td>8</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>3</td>
</tr>
<tr>
<td>RTI International</td>
<td>2</td>
</tr>
<tr>
<td>Alcon Research Institute</td>
<td>2</td>
</tr>
<tr>
<td>Merck</td>
<td>2</td>
</tr>
<tr>
<td>Gilead Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Sanofi</td>
<td>1</td>
</tr>
<tr>
<td>Novartis</td>
<td>1</td>
</tr>
<tr>
<td>Grand total</td>
<td>30</td>
</tr>
</tbody>
</table>
Technical and guidance documents

The published availability of multi-year NTD master plans for countries in the WHO African Region are presented in Table 13. Thirty-seven of the 47 countries in the region had published at least one multi-year strategic plan. The 10 countries without available multi-year strategic plans were Algeria, Cabo Verde, Cameroon, Central African Republic, Lesotho, Mauritania, Mauritius, Mozambique, Uganda, and Zimbabwe. Of note, only five countries (Ethiopia, Rwanda, South Africa, United Republic of Tanzania, and Zambia) had a master plan that was still current. The multi-year master plans of Congo and Equatorial Guinea were current through 2022 while 26 other countries had plans that expired in 2020. Generally, the multi-year NTD master plans were divided into four categories: (i) NTD Situation Analysis, (ii) Strategic Agenda: Purpose and Goals, (iii) Implementing the Strategy: NTD Operational Framework, and (iv) Budgeting for Impact: Estimates and Justifications. Of the countries that had published at least one multi-year NTD masterplan, all provided information on their respective NTD situational analysis. All countries except for Eswatini had strategic agenda and NTD operational framework components. A designated budget component was included in the NTD master plan for all except 7 countries (Côte d’Ivoire, Democratic Republic of Congo, Equatorial Guinea, Eritrea, Eswatini, Namibia, and São Tomé and Príncipe). The list of available strategic plans and corresponding links is available in Annex J.

Table 13: Availability and content of multi-year NTD strategic plan by country

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Angola</td>
<td>Yes (2017 – 2021)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Benin</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Botswana</td>
<td>Yes (2015–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Burundi</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cameroon</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chad</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Comoros</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Congo</td>
<td>Yes (2018 – 2022)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>?</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>?</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Yes (2018–2022)</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Eritrea</td>
<td>Yes (2015–2020)</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Eswatini</td>
<td>Yes (2015–2020)</td>
<td>√</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Yes (2021–2025)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Gabon</td>
<td>Yes (2013–2016)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Gambia</td>
<td>Yes (2015–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Ghana</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Guinea</td>
<td>Yes (2017–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Yes (2014 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Kenya</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Lesotho</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Liberia</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Madagascar</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mali</td>
<td>Yes (2017–2021)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mauritania</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mauritius</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mozambique</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Namibia</td>
<td>Yes (2015 – 2020)</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>X</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Niger</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Yes (2015 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Yes (2019–2024)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>São Tomé e Príncipe</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Senegal</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Seychelles</td>
<td>Yes (2015–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>Yes (2016 - 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>South Africa</td>
<td>Yes (2019 – 2025)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>South Sudan</td>
<td>Yes (2016 – 2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Togo</td>
<td>Yes (2016–2020)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Uganda</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>Yes (2021–2026)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Zambia</td>
<td>Yes (2019–2023)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>No</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

√ = part is presented in the official multi-year NTD master plan; X = part is not presented in the official multi-year NTD master plan; -- = official multi-year NTD master plan not available; * master plan under development; ? = status unknown.
In addition to the multi-year NTD master plans, other relevant documents identified included technical reports. Forty-four technical reports were reviewed as part of this scoping review: 28 from the U.S. Centers for Disease Control and Prevention (CDC), 10 from WHO ESPEN, five from Uniting to Combat NTDs, and one from WHO. Of note, the U.S. CDC repository was not searched directly, as the sources targeted for this review were focused on entities located in the WHO African Region and organizations focused on NTDs; however, the 28 CDC technical reports were captured in the search strategy used for peer-reviewed literature and were moved to the technical report category during the full-text review stage because they were not original research articles. Five out of the 10 ESPEN and all five of the Uniting to Combat NTDs reports were annual update reports on the London declaration on Neglected Tropical Diseases [28], an initiative where global health and development organizations committed to join the fight against NTDs. Twenty-five of the 28 U.S. CDC reports were on Guinea worm and the yearly progress updates towards the global eradication of the disease from 2002 through to 2022. The complete list of technical reports included in this review is available in Annex K.

Further, among the PubMed and Web of Science results, any articles that presented a review or evaluation of NTD programmes, activities, or outcomes was classified as a programme evaluation study and treated as its own subcategory of results (Annex D, n=116). The three most commonly represented diseases among the programme evaluation-type results were Guinea worm (n=35), onchocerciasis (n=18), and Lymphatic filariasis (n=16). The three most commonly represented countries among these results were the African Region (more than one unspecified country, n=30), Ghana (n=15), and Nigeria (n=9). Of note, the diseases least represented in the programme evaluation literature included STHs (n=4), leprosy (n=3), Buruli ulcer (n=1), and yaws (n=1). The full list of technical reports and programme evaluation literature is available in Annex K.
Discussion

This report summarizes the findings of a scoping review of published literature undertaken to highlight control, elimination, and eradication efforts towards NTDs across the WHO African Region over the last 30 years. The findings from this preliminary review and subsequent report can contribute to regional strategy and position to further NTD control, elimination, and eradication initiatives and contribute to the scientific evidence base generated within the African continent. The results indicate that there are significant gaps in the total number of published scientific articles available in publications depending on disease and country. Based on the articles included in this review, the number of publications focused on the control, elimination, and/or eradication of NTDs in the WHO African Region steadily increased from the early 2000s onward. Most of the articles included in this review were published in 2021, and overall, there were many articles published in the first three years of the 2020 decade. The large number of studies published in the first three years of the 2020 decade may be due efforts towards meeting SDG goals by the 2030 deadline, more funding opportunities as additional attention is given NTDs, and increased efforts to highlight NTD control, elimination, eradication research.

Per the findings, among the included articles, there were no scientific publications on NTD control, elimination, or eradication conducted in several African countries, namely Algeria, Botswana, Cabo Verde, Central African Republic, Comoros, Congo, Eritrea, Eswatini, Guinea Bissau, Mauritania, Mauritius, and Seychelles. However, this is not because NTDs are not endemic in all those countries. In 2021, ESPEN reported that one or more NTDs were endemic and at least one preventive chemotherapy was required in all those countries. In 2021, ESPEN reported that one or more NTDs were endemic and at least one preventive chemotherapy was required in all those countries except for Mauritius and Seychelles. It remains essential to conduct studies aimed at assessing true disease burden in these locations, and this aligns closely with the highlighted importance of investing in scientific understanding. Further, these kinds of localized analyses are necessary and remain important due to a lack of generalizability and different disease dynamics across locations.

Additionally, the number of studies and the research initiatives the studies summarized were conducted across the region were not evenly distributed, as shown in Table 5 and Figure 3. Countries in the East and West Africa regions were the locations for the majority of the articles included in this review while there were notably less from the Central and Southern regions. Additionally, over half of the included articles published on NTD control, elimination and eradication were conducted in the United Republic of Tanzania (16.2%), Ethiopia (10.1%), Nigeria (9.6%), Kenya (9.4%), Ghana (7.5%), Cameroon (7.3%) and Uganda (6.3%). All these countries have a documented high burden of NTDs. In 2021, ESPEN [29] reported that Cameroon, Ethiopia, Nigeria and United Republic of Tanzania required preventive chemotherapy (PC) for five NTDs. Ghana and Kenya required PC for four NTDs. Conversely, six countries had only one included article on NTD control, elimination, or eradication since 1990. Of these six countries, South Sudan required PC for five NTDs, Angola required PC for four NTDs, Madagascar, and São Tomé
and Príncipe each required PC for three NTDs, and Lesotho required PC for one NTD [29]. To address this discrepancy, it is important to further investigate existing gaps in terms of local research capacity and funding.

Based on the findings from this scoping review, there were also disparities among which diseases were focused on. Trachoma (16.3%), lymphatic filariasis (16.3%), schistosomiasis (16.0%), and onchocerciasis (14.4%) were the NTDs most represented in the articles included in this review. This was further reflected in the thematic areas of the included articles, as most focused on MDA, and MDA is routinely implemented for the control and elimination of these NTDs [30, 31]. While these NTDs are among the most common and therefore represent most of the NTD burden [7], it remains essential to bolster research on other NTDs that remain public health problems targeted for control, elimination, or eradication [29]. Included studies often reported similar challenges, including incomplete data, migration or human movement, programme limitations, accessibility issues (e.g., hard to reach areas), knowledge gaps, and intervention acceptance, highlighting areas that would benefit from additional attention and research.

As regional efforts towards combatting NTDs and achieving the SDGs continues, understanding available funding and interested funding entities can facilitate new or renewed partnerships [16, 28, 32]. Clear understanding of individual and consortium funding entities in the NTD control, elimination, and eradication efforts may inform future research opportunities. While the funder analysis presented in this report cannot determine the monetary amount funded by the listed agencies, it does provide a proxy for identifying what entities often contribute in NTD-related studies. The funding results demonstrated the largest proportion of funding entities in NTD control, eradication, and elimination efforts based on the included articles may be smaller, lesser known, or local funding agencies (categorized as “Other” in this report). The largest percentage of individual funders were, as expected, large international funding agencies such as the Bill & Melinda Gates Foundation, United States Agency for International Development (USAID), Department for International Development (DFID), US National Institutes of Health (NIH), and the Wellcome Trust.

In terms of planning for NTD control, elimination, and eradication at the national level, 10 countries in the WHO African Region did not have published multi-year strategic plans. Of these 10 countries, only Mauritius does not require preventive chemotherapy for any NTDs: Central African Republic, Cameroon, and Uganda each require it for 5 NTDs; Mozambique and Zimbabwe each require it for 4 NTDs; Mauritania requires it for 2 NTDs; and Algeria, Cabo Verde, and Lesotho each require it for one NTD [29]. National efforts for NTD prevention, control, elimination, or eradication should be coordinated through multi-year master plans for effective planning, implementation, and accountability of NTD programmes in the WHO African Region. These master plans should outline specific, measurable, achievable, relevant, and time-bound specific actions; monitoring strategies; and the financial provisions for planned activities [33]. Development of such master plans, including subsequent updates and revisions to existing plans, requires conducting a situational analysis for NTDs in the country and identifying appropriately tailored required actions. This is a crucial step towards coordinating and harmonizing the prevention, control, elimination, or eradication of NTDs at the national level. Therefore, countries in the WHO region that do not have available or current master plans should consider developing these, as such an endeavour may also be an opportunity to review recent progress, identify challenges, and conduct monitoring and evaluation of existing programmes focusing on NTDs.

Limitations

This scoping review provides high-level summary data from articles on the control, elimination, or eradication of NTDs in the WHO African Region from 1990 through early December 2022. The report displays overall study characteristics (i.e., year published, thematic area, location), providing context to the state of science surrounding NTD control, elimination, and eradication efforts in the region. As the goal of this scoping review was to provide an overview of the state of the
literature, included studies were categorized based on study type and thematic area of focus; therefore, specific information on study design and specific results were not reviewed in detail.

In the thematic analysis, the two reviewers focused on identifying the main themes present in the key findings and challenges reported for each included study for each category and not on coding each sentence identically. As a result, there were some similarities within codes utilized to identify some of the sub-themes (for example, “programme limitations" encompasses multiple types of challenges). However, the goal of the thematic analysis was to identify the most commonly present themes for each category, and while there may have been overlap in the sub-themes identified, there was decent agreement among the two reviewers on the most common main themes.

Funding information was prepopulated from most of the included studies (>50%) from the citation export from Web of Science. The remaining funding information was manually extracted during the full-text review for each article. However, because most of the funding information was already prepopulated, the reviewers were unable to determine whether pharmaceutical companies listed as funders in the Web of Science extraction were in fact financial donors or therapeutic drug donors. The latter are typically not considered financial funders. To be conservative, during manual review the reviewers included all funding information regardless of whether funders were mentioned as financial or pharmaceutical contributors. Furthermore, the counts for the funding organizations may be underestimated due to the simplification of reporting only main funding entities. For example, if one article listed multiple grants funded by the Bill & Melinda Gates Foundation, this review only counted each funding agency once (i.e., not by programme or grant). The authors were not able to compare those funders listed in the included studies to their donated monetary amount. Therefore, while an organization may be the most cited funder, they may not be the one financially contributing the most.

When considering the technical and guidance reports, the reviewers did not assess the content of the multi-year NTD strategic plan, only whether or not countries in the WHO African Region had a strategic plan in place. While the presence or absence of the four specific content areas was documented, this review did not assess the quality of the information contained within the multi-year strategic plans.

Looking forward

This report provides a description of the published literature focusing on NTD control, elimination, and eradication in the WHO African Region since the 1990s. Additional work remains to complete this scoping review. In addition to the focus on peer-reviewed literature, it is important to also investigate and discuss implementation of NTD control programmes in the region, as there is a need to standardize the diagnostics tools, MDA campaigns, and monitoring and evaluation activities for NTD programmes. Such standardization will allow for improved comparisons of NTD elimination, eradication, and control efforts both within countries and between countries. A more integrated approach – rather than focusing on specific diseases, individually - can maximize the impact of available resources. Additionally, more attention is needed on NTD elimination, eradication, and control efforts among mobile or displaced populations, as these important subpopulations may be a source of re-emergence or recrudescence as countries move to interrupt transmission. Similarly, there is a need to address the NTD elimination, eradication, and control efforts in areas that are hard to reach, either due to remoteness or security concerns. Lastly, the establishment of academic partnerships or regional centers of excellence could be beneficial.
Conclusion

Large strides have been made towards the control, elimination, and eradication of NTDs across the WHO African Region since the announcement of the MDGs. This report provides a high-level overview of the state of science regarding these since 1990. This report illustrated the different thematic areas, locations, number of publications, and funding entities of peer-reviewed articles focusing on NTD control, elimination, and eradication in the region. Furthermore, the report presented an overview of countries with multi-year strategic plans for NTDs, highlighting gaps in country-level programmes. Moving forward, it is important to also investigate and discuss implementation of NTD control programme in the region in the final comprehensive report.
References

15. World Health Organization. WHO welcomes US$ 140 million BMGF investment to end

29. ESPEN. Number of NTDs requiring PC in the African Region. n.d.; Available from: https://espen.afro.who.int/countries.

32. Uniting to Combat NTDs, Kigali Declaration on Neglected Tropical Diseases. 2022: Kigali, Rwanda.

 Annex

Annex A
Alphabetical list of neglected tropical diseases included in this review

Buruli ulcer Chikungunya Dengue Dracunculiasis

Echinococcosis Foodborne trematodiasis Human African trypanosomiasis

Leishmaniasis Leprosy Loa loa Lymphatic filariasis
Control, elimination, and eradication efforts for neglected tropical diseases

- Mycetoma, chromoblastomycosis, and other deep mycoses
- Onchocerciasis
- Rabies
- Scabies
- Schistosomiasis
- Soil-transmitted helminths
- Snakebite envenoming
- Taeniasis/cysticercosis
- Trachoma
- Yaws
Annex B

Search strategy and number of articles retrieved from the three databases

<table>
<thead>
<tr>
<th>Database</th>
<th>Search</th>
<th>Date</th>
<th>Search strategy</th>
<th>No. new results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochrane</td>
<td>First search</td>
<td>3 Dec 2022</td>
<td>(“elimination” OR “eradication” OR “disease control”) AND (“intervention” OR “program”) AND (“neglected tropical disease” OR “Guinea worm” OR “dracunculiasis” OR “Bilharzia” OR “schistosomiasis” OR “schistosome” OR “snail fever” OR “buruli ulcer” OR “trachoma” OR “typanosomiasis” OR “African sleeping sickness” OR “chikungunya” OR “dengue” OR “chinchococcosis” OR “elephantiasis” OR “lymphatic filariasis” OR “onchoerciasis” OR “river blindness” OR “leishmaniasis” OR “mycetoma” OR “loprosy” OR “Hansen’s disease” OR “yaws” OR “trypenoma pallidum” OR “rabies” OR “scabies” OR “chromoblastomycosis” OR “deep mycoses” OR “sol transmitted helminths” OR “hookworm” OR “ascariasis” OR “round worm” OR “whipworm” OR “trichuris” OR “snake bite” OR “snake envenoming” OR “bejel” OR “pinta” OR “loiasis” OR “loa loa filariasis” OR “foodborne trematodiasis” OR “foodborne trematodes” OR “clonorchiasis” OR “fascioliasis” OR “opisthorchiasis” OR “paragonimiasis” OR “taeniasis” OR “cysticercosis”) in Title Abstract Keyword - (Word variations have been searched) (restricted from 1990-present)</td>
<td>8</td>
</tr>
<tr>
<td>Cochrane</td>
<td>Second search</td>
<td>27 Feb 2023</td>
<td>Publications from December 3-31 2022 and additional diseases</td>
<td>0</td>
</tr>
<tr>
<td>PubMed</td>
<td>First search</td>
<td>3 Dec 2022</td>
<td>(“elimination” OR “eradication” OR “disease control”) AND (“neglected tropical disease” OR “guinea worm” OR “dracunculiasis” OR “bilharzia” OR “schistosomiasis” OR “schistosome” OR “snail fever” OR “buruli ulcer” OR “trachoma” OR “typanosomiasis” OR “African sleeping sickness” OR “chikungunya” OR “dengue” OR “chinchococcosis” OR “elephantiasis” OR “lymphatic filariasis” OR “onchoerciasis” OR “river blindness” OR “leishmaniasis” OR “mycetoma” OR “loprosy” OR “Hansen’s disease” OR “yaws” OR “trypenoma pallidum” OR “rabies” OR “scabies” OR “chromoblastomycosis” OR “deep mycoses” OR “sol transmitted helminths” OR “hookworm” OR “ascariasis” OR “round worm” OR “whipworm” OR “trichuris” OR “snake bite” OR “snake envenoming” OR “bejel” OR “pinta”) AND (“intervention” OR “program”) AND (“algeria” OR “angola” OR “benin” OR “botswana” OR “burkina faso” OR “burundi” OR “ cabo verde” OR “cape verde” OR “cameroon” OR “central african republic” OR “chad” OR “comoros” OR “congo” OR “côte d’ivoire” OR “gambia” OR “gambia” OR “gana” OR “guinea” OR “guinea bissau” OR “kenya” OR “lesotho” OR “liberia” OR “madagascar” OR “malawi” OR “mali” OR “mauritania” OR “mauritius” OR “mozambique” OR “Namibia” OR “Niger” OR “nigeria” OR “rwanda” OR “sao tome principe” OR “Senegal” OR “sierra leone” OR “south africa” OR “south sudan” OR “togo” OR “uganda” OR “tanzania” OR “united republic of tanzania” OR “zambia” OR “zimbabwe”) (restricted from december 2022-present)</td>
<td>759</td>
</tr>
<tr>
<td>PubMed</td>
<td>Second search</td>
<td>27 Feb 2023</td>
<td>Publications from December 3-31 2022</td>
<td>4</td>
</tr>
<tr>
<td>Third search</td>
<td>Additional diseases</td>
<td>27 Feb 2023</td>
<td>(“elimination” OR “eradication” OR “disease control”) AND (“loiasis” OR “loa loa filariasis” OR “foodborne trematodiasis” OR “foodborne trematodes” OR “clonorchiasis” OR “fascioliasis” OR “opisthorchiasis” OR “paragonimiasis” OR “taeniasis” OR “cysticercosis”) AND (“intervention” OR “program”) AND (“algeria” OR “angola” OR “botswana” OR “burkina faso” OR “burundi” OR “ cabo verde” OR “cape verde” OR “cameroon” OR “central african republic” OR “chad” OR “comoros” OR “congo” OR “côte d’ivoire” OR “gambia” OR “gambia” OR “gana” OR “guinea” OR “guinea bissau” OR “kenya” OR “lesotho” OR “liberia” OR “madagascar” OR “malawi” OR “mali” OR “mauritania” OR “mauritius” OR “mozambique” OR “Namibia” OR “Niger” OR “nigeria” OR “rwanda” OR “sao tome principe” OR “Senegal” OR “sierra leone” OR “south africa” OR “south sudan” OR “togo” OR “uganda” OR “tanzania” OR “united republic of tanzania” OR “zambia” OR “zimbabwe”) (restricted from december 1990-present)</td>
<td>21</td>
</tr>
<tr>
<td>Database</td>
<td>Search</td>
<td>Date</td>
<td>Search strategy</td>
<td>No. new results</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>First search</td>
<td>3 Dec 2022</td>
<td>(ALL=("elimination" OR "eradication" OR "disease control") AND ("intervention" OR "program"))) AND (ALL=("neglected tropical disease" OR "Guinea worm" OR "dracunculiasis" OR "Bilharzia" OR "schistosomiasis" OR "schistosome" OR "small fever" OR "buruli ulcer" OR "trachoma" OR "trypanosomiasis" OR "African sleeping sickness" OR "chikungunya" OR "dengue" OR "echinococcosis" OR "elephantiasis" OR "lymphatic filariasis" OR "onchocerciasis" OR "river blindness" OR "leishmaniasis" OR "mucocutaneous leprosy" OR "Hansen's disease" OR "yaws" OR "treponema pallidum" OR "rabies" OR "scabies" OR "chromoblastomycosis" OR "deep mycoses" OR "soil transmitted helminths" OR "hookworm" OR "ascariasis" OR "round worm" OR "whipworm" OR "trichuriasis" OR "snake bite" OR "snake envenomation" OR "bejel" OR "pinta")) AND (TS=("Algeria" OR "Angola" OR "Benin" OR "Botswana" OR "Burkina Faso" OR "Burundi" OR "Cabo Verde" OR "Cape Verde" OR "Cameroon" OR "Central African Republic" OR "Chad" OR "Comoros" OR "Congo" OR "Côte d'Ivoire" OR "Ivory Coast" OR "Democratic Republic of Congo" OR "Equatorial Guinea" OR "Eritrea" OR "Eswatini" OR "Swaziland" OR "Ethiopia" OR "Gabon" OR "Gambia" OR "The Gambia" OR "Ghana" OR "Guinea" OR "Guinea Bissau" OR "Guinea-Bissau" OR "Kenya" OR "Lesotho" OR "Liberia" OR "Madagascar" OR "Malawi" OR "Mali" OR "Mauritania" OR "Mauritius" OR "Mozambique" OR "Namibia" OR "Niger" OR "Nigeria" OR "Rwanda" OR "Sao Tome and Principe" OR "Senegal" OR "Seychelles" OR "Sierra Leone" OR "South Africa" OR "South Sudan" OR "Togo" OR "Uganda" OR "Tanzania" OR "United Republic of Tanzania" OR "Zambia" OR "Zimbabwe")) (restricted from 1990-present)</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>Second search</td>
<td>27 Feb 2023</td>
<td>(ALL=("elimination" OR "eradication" OR "disease control") AND ("intervention" OR "program"))) AND (ALL=("neglected tropical disease" OR "Guinea worm" OR "dracunculiasis" OR "Bilharzia" OR "schistosomiasis" OR "schistosome" OR "small fever" OR "buruli ulcer" OR "trachoma" OR "trypanosomiasis" OR "African sleeping sickness" OR "chikungunya" OR "dengue" OR "echinococcosis" OR "elephantiasis" OR "lymphatic filariasis" OR "onchocerciasis" OR "river blindness" OR "leishmaniasis" OR "mucocutaneous leprosy" OR "Hansen's disease" OR "yaws" OR "treponema pallidum" OR "rabies" OR "scabies" OR "chromoblastomycosis" OR "deep mycoses" OR "soil transmitted helminths" OR "hookworm" OR "ascariasis" OR "round worm" OR "whipworm" OR "trichuriasis" OR "snake bite" OR "snake envenomation" OR "bejel" OR "pinta")) AND (TS=("Algeria" OR "Angola" OR "Benin" OR "Botswana" OR "Burkina Faso" OR "Burundi" OR "Cabo Verde" OR "Cape Verde" OR "Cameroon" OR "Central African Republic" OR "Chad" OR "Comoros" OR "Congo" OR "Côte d'Ivoire" OR "Ivory Coast" OR "Democratic Republic of Congo" OR "Equatorial Guinea" OR "Eritrea" OR "Eswatini" OR "Swaziland" OR "Ethiopia" OR "Gabon" OR "Gambia" OR "The Gambia" OR "Ghana" OR "Guinea" OR "Guinea Bissau" OR "Guinea-Bissau" OR "Kenya" OR "Lesotho" OR "Liberia" OR "Madagascar" OR "Malawi" OR "Mali" OR "Mauritania" OR "Mauritius" OR "Mozambique" OR "Namibia" OR "Niger" OR "Nigeria" OR "Rwanda" OR "Sao Tome and Principe" OR "Senegal" OR "Seychelles" OR "Sierra Leone" OR "South Africa" OR "South Sudan" OR "Togo" OR "Uganda" OR "Tanzania" OR "United Republic of Tanzania" OR "Zambia" OR "Zimbabwe")) (restricted from December 2022-present)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Third search</td>
<td>27 Feb 2023</td>
<td>(ALL=("elimination" OR "eradication" OR "disease control") AND ("intervention" OR "program"))) AND (ALL=("loiasis" OR "loa loa filariasis" OR "Foodborne trematodiasis" OR "Foodborne trematodes" OR "Clonorchiasis" OR "Fascioliasis" OR "Opisthorchiasis" OR "Paragonimiasis" OR "Taeniasis" OR "Cysticercosis")) AND (TS=("Algeria" OR "Angola" OR "Benin" OR "Botswana" OR "Burkina Faso" OR "Burundi" OR "Cabo Verde" OR "Cape Verde" OR "Cameroon" OR "Central African Republic" OR "Chad" OR "Comoros" OR "Congo" OR "Côte d'Ivoire" OR "Ivory Coast" OR "Democratic Republic of Congo" OR "Equatorial Guinea" OR "Eritrea" OR "Eswatini" OR "Swaziland" OR "Ethiopia" OR "Gabon" OR "Gambia" OR "The Gambia" OR "Ghana" OR "Guinea" OR "Guinea Bissau" OR "Guinea-Bissau" OR "Kenya" OR "Lesotho" OR "Liberia" OR "Madagascar" OR "Malawi" OR "Mali" OR "Mauritania" OR "Mauritius" OR "Mozambique" OR "Namibia" OR "Niger" OR "Nigeria" OR "Rwanda" OR "Sao Tome and Principe" OR "Senegal" OR "Seychelles" OR "Sierra Leone" OR "South Africa" OR "South Sudan" OR "Togo" OR "Uganda" OR "Tanzania" OR "United Republic of Tanzania" OR "Zambia" OR "Zimbabwe")) (restricted from December 2022-present)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Additional diseases</td>
<td>27 Feb 2023</td>
<td>(ALL=("elimination" OR "eradication" OR "disease control") AND ("intervention" OR "program"))) AND (ALL=("loiasis" OR "loa loa filariasis" OR "Foodborne trematodiasis" OR "Foodborne trematodes" OR "Clonorchiasis" OR "Fascioliasis" OR "Opisthorchiasis" OR "Paragonimiasis" OR "Taeniasis" OR "Cysticercosis")) AND (TS=("Algeria" OR "Angola" OR "Benin" OR "Botswana" OR "Burkina Faso" OR "Burundi" OR "Cabo Verde" OR "Cape Verde" OR "Cameroon" OR "Central African Republic" OR "Chad" OR "Comoros" OR "Congo" OR "Côte d'Ivoire" OR "Ivory Coast" OR "Democratic Republic of Congo" OR "Equatorial Guinea" OR "Eritrea" OR "Eswatini" OR "Swaziland" OR "Ethiopia" OR "Gabon" OR "Gambia" OR "The Gambia" OR "Ghana" OR "Guinea" OR "Guinea Bissau" OR "Guinea-Bissau" OR "Kenya" OR "Lesotho" OR "Liberia" OR "Madagascar" OR "Malawi" OR "Mali" OR "Mauritania" OR "Mauritius" OR "Mozambique" OR "Namibia" OR "Niger" OR "Nigeria" OR "Rwanda" OR "Sao Tome and Principe" OR "Senegal" OR "Seychelles" OR "Sierra Leone" OR "South Africa" OR "South Sudan" OR "Togo" OR "Uganda" OR "Tanzania" OR "United Republic of Tanzania" OR "Zambia" OR "Zimbabwe")) (restricted from 1990-present)</td>
<td>50</td>
</tr>
</tbody>
</table>

Duplicate results: 435

Total unique results: 1296
Annex C

Rationale for excluded literature during full-text review

<table>
<thead>
<tr>
<th>Reason for exclusion</th>
<th>No. articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal study</td>
<td>1</td>
</tr>
<tr>
<td>Book chapter</td>
<td>5</td>
</tr>
<tr>
<td>Disease not of interest</td>
<td>7</td>
</tr>
<tr>
<td>Immunogenicity/genetics study, in vitro/lab studies without practice or field validation, early product development)</td>
<td>26</td>
</tr>
<tr>
<td>Modelling study without field application/validation</td>
<td>37</td>
</tr>
<tr>
<td>Narrative review, perspective, or opinion/commentary piece</td>
<td>49</td>
</tr>
<tr>
<td>Not focused on control, elimination and/or eradication</td>
<td>26</td>
</tr>
<tr>
<td>Not specific to African Region</td>
<td>5</td>
</tr>
<tr>
<td>Not specific to NTDs</td>
<td>2</td>
</tr>
<tr>
<td>Policy proposal</td>
<td>1</td>
</tr>
<tr>
<td>Study protocol</td>
<td>12</td>
</tr>
<tr>
<td>Time period before interest</td>
<td>5</td>
</tr>
<tr>
<td>Total excluded during full-text review</td>
<td>176</td>
</tr>
</tbody>
</table>
Annex D

List of included studies in this scoping review of NTD elimination, eradication, and control in the WHO African Region

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>DOI</th>
<th>Article Title</th>
<th>Journal</th>
<th>Location</th>
<th>NTD of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulai et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006303</td>
<td>Community-based mass treatment with azithromycin for the elimination of yaws in Ghana-Results of a pilot study</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Yaws</td>
</tr>
<tr>
<td>Abe et al.</td>
<td>2019</td>
<td>10.3390/tropicalmed4030112</td>
<td>Helminthiasis among School-Age Children and Hygiene Conditions of Selected Schools in Lafia, Nasarawa State, Nigeria</td>
<td>Trop Med Infect Dis</td>
<td>Nigeria</td>
<td>STHs</td>
</tr>
<tr>
<td>Abong et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0008926</td>
<td>The Mbam drainage system and onchocerciasis transmission post ivermectin mass drug administration (MDA) campaign, Cameroon</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Adafrie et al.</td>
<td>2021</td>
<td>10.2147/OPTH.S302646</td>
<td>Uptake of Trachoma Trichiasis Surgery and Associated Factors Among Trichiasis-Diagnosed Clients in Southern Tigray, Ethiopia</td>
<td>CLIN OPHTHAL-MOL</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Adam et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002135</td>
<td>The sequential aerosol technique: a major component in an integrated strategy of intervention against Riverine Tsetse in Ghana</td>
<td>PLoS Negl Trop Dis</td>
<td>Ghana</td>
<td>HAT</td>
</tr>
<tr>
<td>Adamu et al.</td>
<td>2016</td>
<td>10.1080/09286586.2016.1247877</td>
<td>Prevalence of Trachoma in Benishangul Gumuz Region, Ethiopia: Results of Seven Population-Based Surveys from the Global Trachoma Mapping Project</td>
<td>OPHTHAL EPIDEMIOL</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Adeney et al.</td>
<td>2007</td>
<td>10.1016/j.sapharm.2006.07.001</td>
<td>Sociocultural aspects of mass delivery of praziquantel in schistosomiasis control: the Abeokuta experience</td>
<td>Res Social Adm Pharm</td>
<td>Nigeria</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Admassu et al.</td>
<td>2013</td>
<td>10.1186/1471-2431-13-199</td>
<td>Active trachoma two years after three rounds of azithromycin mass treatment in Cheha district Gurage zone, Southern Ethiopia</td>
<td>BMC PEDIATR</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Adu Mensah et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010129</td>
<td>Occurrence of Lymphatic filariasis infection after 15 years of mass drug administration in two hotspot districts in the Upper East Region of Ghana</td>
<td>PLoS Negl Trop Dis</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Ahiadome et al.</td>
<td>2020</td>
<td>10.11604/pamj.2020.35.131.21069</td>
<td>Soil transmitted helminth infections in Ghana: a ten year review</td>
<td>PAN AFR MED J</td>
<td>Ghana</td>
<td>STHs</td>
</tr>
<tr>
<td>Ahmed et al.</td>
<td>2018</td>
<td>10.1093/inthealth/ihy055</td>
<td>Echinococcosis in Tambool, Central Sudan: a knowledge, attitude and practice (KAP) study</td>
<td>Int Health</td>
<td>Sudan**</td>
<td>Echinococcosis</td>
</tr>
<tr>
<td>Ahorlu et al.</td>
<td>2022</td>
<td>10.3390/tropicalmed7100273</td>
<td>A Comparative Study of Lymphatic filariasis-Related Perceptions among Treated and Non-Treated Individuals in the Ahanta West Municipality of Ghana</td>
<td>TROP MED INFECT DIS</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Ahorlu et al.</td>
<td>2018</td>
<td>10.1186/s12889-018-5157-7</td>
<td>Community perspectives on persistent transmission of Lymphatic filariasis in three hotspot districts in Ghana after 15 rounds of mass drug administration: a qualitative assessment</td>
<td>BMC PUBLIC HEALTH</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Ahorlu et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006776</td>
<td>Implementing active community-based surveillance-response system for Buruli ulcer early case detection and management in Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Buruli ulcer</td>
</tr>
<tr>
<td>Aikhomu et al.</td>
<td>2000</td>
<td>10.1046/j.1365-3156.2000.00510.x</td>
<td>Acceptance and use of communal filtration units in Guinea worm eradication</td>
<td>TROP MED INT HEALTH</td>
<td>Nigeria</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Akogun et al.</td>
<td>2011</td>
<td>10.1016/j.actatropica.2011.03.008</td>
<td>Rapid community identification, pain and distress associated with lymphoedema and adenolymphangitis due to Lymphatic filariasis in resource-limited communities of North-eastern Nigeria</td>
<td>ACTA TROP</td>
<td>Nigeria</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Akrasi et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010680</td>
<td>Adverse drug effects among students following mass de-worming exercise involving administration of Praziquantel and Albendazole in KEEA Municipality, Ghana</td>
<td>PLoS Negl Trop Dis</td>
<td>Ghana</td>
<td>Lymphatic filariasis; Schistosomiasis</td>
</tr>
<tr>
<td>Akurut et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008718</td>
<td>Anthelmintic treatment receipt and its predictors in Lake Victoria fishing communities, Uganda: Intervention coverage results from the LaVIISWA cluster randomised trial</td>
<td>PLOS NEGLECT TROP D</td>
<td>Uganda</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Ame et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010477</td>
<td>Impact of preventive chemotherapy on transmission of soil-transmitted helminth infections in Pemba Island, United Republic of Tanzania, 1994-2021</td>
<td>PLoS Negl Trop Dis</td>
<td>United Republic of Tanzania</td>
<td>STHs</td>
</tr>
<tr>
<td>Amsalu et al.</td>
<td>2022</td>
<td>10.3855/jidc.15975</td>
<td>Ivermectin mass drug administration for onchocerciasis elimination: can it reduce the prevalence of scabies in Ethiopia?</td>
<td>J Infect Dev Ctries</td>
<td>Ethiopia</td>
<td>Scabies</td>
</tr>
<tr>
<td>Amza et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0001983</td>
<td>The Easiest Children to Reach Are Most Likely to Be Infected with Ocular Chlamydia trachomatis in Trachoma Endemic Areas of Niger</td>
<td>PLOS NEGLECT TROP D</td>
<td>Niger</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Anagbogu et al.</td>
<td>2022</td>
<td>10.1186/s13071-022-05302-x</td>
<td>Integrated transmission assessment surveys (ITAS) of Lymphatic filariasis and onchocerciasis in Cross River, Taraba and Yobe States, Nigeria</td>
<td>PARASITE VECTOR</td>
<td>Nigeria</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Anderson et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007377</td>
<td>A bioeconomic model for the optimization of local canine rabies control</td>
<td>PLOS NEGLECT TROP D</td>
<td>South Africa</td>
<td>Rabies</td>
</tr>
<tr>
<td>Arega et al.</td>
<td>2020</td>
<td>10.3390/tropicalmed5010045</td>
<td>Rabies Vaccination of 6-Week-Old Puppies Born to Immunized Mothers: A Randomized Controlled Trial in a High-Mortality Population of Owned, Free-Roaming Dogs</td>
<td>TROP MED INFECT DIS</td>
<td>South Africa</td>
<td>Rabies</td>
</tr>
<tr>
<td>Arnold et al.</td>
<td>2020</td>
<td>10.1073/pnas.2008951117</td>
<td>Fine-scale heterogeneity in Schistosoma mansoni force of infection measured through antibody response</td>
<td>P NATL ACAD SCI USA</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Ashton et al.</td>
<td>2011</td>
<td>10.1186/1756-3305-4-134</td>
<td>The impact of mass drug administration and long-lasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda</td>
<td>PARASITE VECTOR</td>
<td>Uganda</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Assare et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004329</td>
<td>Sustaining Control of Schistosomiasis mansoni in Western Côte d’Ivoire: Results from a SCORE Study, One Year after Initial Praziquantel Administration</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d’Ivoir</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Athingo et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008948</td>
<td>Application of the GARC Data Logger-a custom-developed data collection device-to capture and monitor mass dog vaccination campaigns in Namibia</td>
<td>PLOS NEGLECT TROP D</td>
<td>Namibia</td>
<td>Rabies</td>
</tr>
<tr>
<td>Avokpaho et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009646</td>
<td>Factors associated with soil-transmitted helminths infection in Benin: Findings from the DeWorm3 study</td>
<td>PLOS NEGLECT TROP D</td>
<td>Benin</td>
<td>STHs</td>
</tr>
<tr>
<td>Awadzi et al.</td>
<td>2004</td>
<td>10.1179/000349804225003253</td>
<td>An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana</td>
<td>ANN TROP MED PARASIT</td>
<td>Ghana</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Ayalew et al.</td>
<td>2020</td>
<td>10.1186/s41182-020-00210-1</td>
<td>Determinants of community-led ivermectin treatment adherence for onchocerciasis control in Western Ethiopia: a case-control study</td>
<td>TROP MED HEALTH</td>
<td>Nigeria</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Ayele et al.</td>
<td>2011</td>
<td>10.1371/journal.pntd.0001441</td>
<td>Risk Factors for Ocular Chlamydia after Three Mass Azithromycin Distributions</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Bakajika et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010079</td>
<td>Effect of a single dose of 8 mg moxidectin or 150 mu g/kg ivermectin on O. volvulus skin microfilariae in a randomized trial: Differences between areas in the Democratic Republic of the Congo, Liberia and Ghana and impact of intensity of infection</td>
<td>PLOS NEGLECT TROP D</td>
<td>DRC; Liberia; Ghana</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Bakajika et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006904</td>
<td>On-going transmission of human onchocerciasis in the Massangam health district in the West Region of Cameroon: Better understanding transmission dynamics to inform changes in programmatic interventions</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Bamani et al.</td>
<td>2010</td>
<td>10.1371/journal.pntd.000734</td>
<td>Where Do We Go from Here? Prevalence of Trachoma Three Years after Stopping Mass Distribution of Antibiotics in the Regions of Kalnclude and Koulikoro, Mali</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Bamani et al.</td>
<td>2013</td>
<td>10.1093/her/cys105</td>
<td>Enhancing community knowledge and health behaviours to eliminate blinding trachoma in Mali using radio messaging as a strategy</td>
<td>HEALTH EDUC RES</td>
<td>Mali</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Bardosh et al.</td>
<td>2013</td>
<td>10.1186/1756-3305-6-204</td>
<td>Conflict of interest: use of pyrethroids and amidines against tsetse and ticks in zoonotic sleeping sickness endemic areas of Uganda</td>
<td>PARASITE VEC-TOR</td>
<td>Uganda</td>
<td>HAT</td>
</tr>
<tr>
<td>Bardosh</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006537</td>
<td>Towards a science of global health delivery: A socio-anthropological framework to improve the effectiveness of neglected tropical disease interventions</td>
<td>PLOS NEGLECT TROP D</td>
<td>Tanzania, Uganda, Zambia</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Bekele et al.</td>
<td>2010</td>
<td>10.1016/j.vetpar.2009.11.028</td>
<td>Evaluation of Deltamethrin applications in the control of tsetse and trypanosomosis in the southern rift valley areas of Ethiopia</td>
<td>Vet Parasitol</td>
<td>Ethiopia</td>
<td>HAT</td>
</tr>
<tr>
<td>Ben Gal et al.</td>
<td>2022</td>
<td>10.3390/tropicalmed7090218</td>
<td>Sustainable Elimination of Schistosomiasis in Ethiopia-A Five-Year Follow-Up Study</td>
<td>TROP MED INFECT DIS</td>
<td>Ethiopia</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Berhe et al.</td>
<td>2022</td>
<td>10.1186/s12889-022-13406-3</td>
<td>Understanding the risk perception of visceral leishmaniasis exposure and the acceptability of sandfly protection measures among migrant workers in the lowlands of Northwest Ethiopia: a health belief model perspective</td>
<td>BMC PUBLIC HEALTH</td>
<td>Ethiopia</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Biritwum et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007115</td>
<td>Progress towards Lymphatic filariasis elimination in Ghana from 2000-2016: Analysis of microfilaria prevalence data from 430 communities</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Biritwum et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005619</td>
<td>Improving drug delivery strategies for Lymphatic filariasis elimination in urban areas in Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Biritwum et al.</td>
<td>2016</td>
<td>10.1093/trstmh/trx007</td>
<td>Persistent ‘hotspots’ of Lymphatic filariasis microfilaraemia despite 14 years of mass drug administration in Ghana</td>
<td>T ROY SOC TROP M ED H</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Biswas et al.</td>
<td>2017</td>
<td>10.1371/journal.pone.0172465</td>
<td>Optimal combinations of control strategies and cost-effective analysis for visceral leishmaniasis disease transmission</td>
<td>PLOS ONE</td>
<td>South Sudan</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Bof et al.</td>
<td>2018</td>
<td>10.3855/jidc.9881</td>
<td>Untreated villages and factors associated with the absence of Community-Directed Treatment with Ivermectin (CDTI) in DRC</td>
<td>J INFECT DEV COUNTR</td>
<td>Democratic Republic of Congo</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Bogus et al.</td>
<td>2016</td>
<td>10.4269/ajtmh.15-0591</td>
<td>Community Attitudes toward Mass Drug Administration for Control and Elimination of Neglected Tropical Diseases after the 2014 Outbreak of Ebola Virus Disease in Lofa County, Liberia</td>
<td>AM J TROP MED HYG</td>
<td>Liberia</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Bowman et al.</td>
<td>2001</td>
<td>10.1016/S0161-6420(01)00645-5</td>
<td>Natural history of trachomatous scarring in The Gambia - Results of a 12-year longitudinal follow-up</td>
<td>OPHTHALMOLOGY</td>
<td>The Gambia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Brieger et al.</td>
<td>1996</td>
<td>10.1093/heapol/11.1.101</td>
<td>Culturally perceived illness and Guinea worm disease surveillance</td>
<td>HEALTH POLICY PLANN</td>
<td>Nigeria</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>BRIEGER et al.</td>
<td>1992</td>
<td>10.1093/her/7.4.471</td>
<td>LEARNING FROM LOCAL KNOWLEDGE TO IMPROVE DISEASE SURVEILLANCE - PERCEPTIONS OF THE Guinea worm ILLNESS EXPERIENCE</td>
<td>HEALTH EDUC RES</td>
<td>Nigeria</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>BRIEGER et al.</td>
<td>1996</td>
<td>10.1016/0277-9536(95)0098-4</td>
<td>The Yoruba farm market as a communication channel in Guinea worm disease surveillance</td>
<td>SOC SCI MED</td>
<td>Nigeria</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Bronzan et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006551</td>
<td>Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo</td>
<td>PLoS Negl Trop Dis</td>
<td>Togo</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Brunker et al.</td>
<td>2020</td>
<td>10.12688/wellcomeopenres.15518.2</td>
<td>Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes</td>
<td>Wellcome Open Res</td>
<td>Kenya and Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Brunker et al.</td>
<td>2015</td>
<td>10.1093/ve/vev011</td>
<td>Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing</td>
<td>VIRUS EVOL</td>
<td>United Republic of Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Budge et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004358</td>
<td>Accuracy of Coverage Survey Recall following an Integrated Mass Drug Administration for Lymphatic filariasis, Schistosomiasis, and Soil-Transmitted Helminthiasis</td>
<td>PLOS NEGLECT TROP D</td>
<td>Togo</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Burr et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007749</td>
<td>Pgp3 seroprevalence and associations with active trachoma and ocular Chlamydia trachomatis infection in Malawi: cross-sectional surveys in six evaluation units</td>
<td>PLOS NEGLECT TROP D</td>
<td>Malawi</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Byrne et al.</td>
<td>2022</td>
<td>10.1093/trstmh/trab153</td>
<td>Progress towards control and elimination of neglected tropical diseases targeted by preventive chemotherapy in São Tomé e Príncipe</td>
<td>Trans R Soc Trop Med Hyg</td>
<td>São Tomé e Príncipe</td>
<td>Schistosomiasis; STHs; Lymphatic filariasis</td>
</tr>
<tr>
<td>Camara et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009163</td>
<td>Accelerating elimination of sleeping sickness from the Guinean littoral through enhanced screening in the post-Ebola context: A retrospective analysis</td>
<td>PLOS NEGLECT TROP D</td>
<td>Guinea</td>
<td>HAT</td>
</tr>
<tr>
<td>Camara et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009462</td>
<td>Mapping survey of schistosomiasis and soil-transmitted helminthiases towards mass drug administration in The Gambia</td>
<td>PLOS NEGLECT TROP D</td>
<td>The Gambia</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Campbell et al.</td>
<td>2009</td>
<td>10.1080/09286580902863015</td>
<td>Randomized Trial of High Dose Azithromycin Compared to Standard Dosing for Children with Severe Trachoma in Tanzania</td>
<td>OPHTHAL EPIDEMIOL</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Celone et al.</td>
<td>2016</td>
<td>10.1016/j.actatropica.2016.08.004</td>
<td>Increasing the reach: Involving local Muslim religious teachers in a behavioural intervention to eliminate urogenital schistosomiasis in Zanzibar</td>
<td>ACTA TROP</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009119</td>
<td>Children as messengers of health knowledge? Impact of health promotion and water infrastructure in schools on facial cleanliness and trachoma in the community</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Chensnais et al.</td>
<td>2020</td>
<td>10.1016/j.eclinm.2020.100582</td>
<td>Individual risk of post-ivermectin serious adverse events in subjects infected with Loa loa</td>
<td>ECLINICALMEDICINE</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Chidambaram et al.</td>
<td>2006</td>
<td>10.1001/jama.295.10.1142</td>
<td>Effect of a single mass antibiotic distribution on the prevalence of infectious trachoma</td>
<td>JAMA-J AM MED ASSOC</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Chikowore et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005566</td>
<td>A pilot study to delimit tsetse target populations in Zimbabwe</td>
<td>PLOS NEGLECT TROP D</td>
<td>Zimbabwe</td>
<td>HAT</td>
</tr>
<tr>
<td>Chipeta et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002131</td>
<td>Analysis of Schistosomiasis haematobium Infection Prevalence and Intensity in Chikwawa, Malawi: An Application of a Two Part Model</td>
<td>PLOS NEGLECT TROP D</td>
<td>Malawi</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Ciciriello et al.</td>
<td>2022</td>
<td>10.1093/trstmh/trac006</td>
<td>An observational assessment of the safety of mass drug administration for trachoma in Ethiopian children</td>
<td>T ROY SOC TROP MED H</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Clark et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007723</td>
<td>Mapping Schistosoma mansoni endemicity in Rwanda: a critical assessment of geographical disparities arising from circulating cathodic antigen versus Kato-Katz diagnostics</td>
<td>PLOS NEGLCT TROP D</td>
<td>Rwanda</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Clements et al.</td>
<td>2008</td>
<td>10.1016/j.ijpara.2007.08.001</td>
<td>Balinese spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa</td>
<td>INT J PARASITOL</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Cleveland et al.</td>
<td>2019</td>
<td>10.1038/s41598-018-37567-7</td>
<td>A search for tiny dragons (Dracunculus medinensis third-stage larvae) in aquatic animals in Chad, Africa</td>
<td>SCI REP-UK</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Coetzter et al.</td>
<td>2017</td>
<td>10.3390/tropicalmed2030030</td>
<td>Epidemiology of Rabies in Lesotho: The Importance of Routine Surveillance and Virus Characterization</td>
<td>TROP MED INFECT DIS</td>
<td>Lesotho</td>
<td>Rabies</td>
</tr>
<tr>
<td>Compaore et al.</td>
<td>2022</td>
<td>10.1051/parasite/2022024</td>
<td>Monitoring the elimination of gambiense human African trypanosomiasis in the historical focus of Batie, South-West Burkina Faso</td>
<td>PARASITE</td>
<td>Burkina Faso</td>
<td>HAT</td>
</tr>
<tr>
<td>Corley et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004914</td>
<td>The Role of Nurses and Community Health Workers in Confronting Neglected Tropical Diseases in Sub-Saharan Africa: A Systematic Review</td>
<td>PLOS NEGLCT TROP D</td>
<td>African Region (multiple countries)</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Coulibaly et al.</td>
<td>2018</td>
<td>10.3390/tropicalmed3020069</td>
<td>A Rapid Appraisal of Factors Influencing Praziquantel Treatment Compliance in Two Communities Endemic for Schistosomiasis in Côte d’Ivoire</td>
<td>TROP MED INFECT DIS</td>
<td>Côte d’Ivoire</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Coulibaly et al.</td>
<td>2016</td>
<td>10.1186/s13071-016-1911-9</td>
<td>Dynamics of antigenemia and transmission intensity of Wuchereria bancrofti following cessation of mass drug administration in a formerly highly endemic region of Mali</td>
<td>PARASITE VECT- TOR</td>
<td>Mali</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Coulibaly et al.</td>
<td>2015</td>
<td>10.4269/ajtmh.14-0516</td>
<td>The Impact of Six Annual Rounds of Mass Drug Administration on Wuchereria bancrofti Infections in Humans and in Mosquitoes in Mali</td>
<td>AM J TROP MED HYG</td>
<td>Mali</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Coulibaly et al.</td>
<td>2013</td>
<td>10.1186/1756-3305-6-247</td>
<td>Wuchereria bancrofti transmission pattern in southern Mali prior to and following the institution of mass drug administration</td>
<td>PARASITE VECT- TOR</td>
<td>Mali</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Coulibaly et al.</td>
<td>2022</td>
<td>10.1007/s00436-022-07648-8</td>
<td>No evidence of Lymphatic filariasis transmission in Bamako urban setting after three mass drug administration rounds</td>
<td>PARASITOL RES</td>
<td>Mali</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Cozart et al.</td>
<td>2020</td>
<td>10.4269/ajtmh.20-0505</td>
<td>Identification of Human-Derived Attractants to Simulium damnosum Sensu Stricto in the Madi-Mid North Onchocerciasis Focus of Uganda</td>
<td>AM J TROP MED HYG</td>
<td>Unclear</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Cromwell et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0008824</td>
<td>Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning</td>
<td>PLoS Negl Trop Dis</td>
<td>Multiple countries</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Dama et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006677</td>
<td>Description of the first sleeping sickness case diagnosed in Burkina Faso since two decades</td>
<td>PLOS NEGLECT TROP D</td>
<td>Burkina Faso</td>
<td>HAT</td>
</tr>
<tr>
<td>Davis et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010298</td>
<td>Using the same hand: The complex local perceptions of integrated one health based interventions in East Africa</td>
<td>PLOS NEGLECT TROP D</td>
<td>East Africa</td>
<td>Rabies; STHs</td>
</tr>
<tr>
<td>de Souza et al.</td>
<td>2017</td>
<td>10.11604/pamj.2017.27.65.11004</td>
<td>An evaluation of Wb123 antibody elisa in individuals treated with ivermectin and albendazole, and implementation challenges in Africa</td>
<td>PAN AFR MED J</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>de Souza et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004590</td>
<td>Assessing Lymphatic filariasis Data Quality in Endemic Communities in Ghana, Using the Neglected Tropical Diseases Data Quality Assessment Tool for Preventive Chemotherapy</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Debrah et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0006099</td>
<td>Elimination of trachoma as a public health problem in Ghana: Providing evidence through a pre-validation survey</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Dembele et al.</td>
<td>2010</td>
<td>10.1086/657063</td>
<td>Use of High-Dose, Twice-Yearly Albendazole and Ivermectin to Suppress Wuchereria bancrofti Microfilial Levels</td>
<td>CLIN INFECT DIS</td>
<td>Mali</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Derua et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005938</td>
<td>Lymphatic filariasis transmission on Mafia Islands, Tanzania: Evidence from xenomonitoring in mosquito vectors</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>DeWorm3 Trials Team.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008771</td>
<td>Baseline patterns of infection in regions of Benin, Malawi and India seeking to interrupt transmission of soil transmitted helminths (STH) in the De-Worm3 trial</td>
<td>PLoS Negl Trop Dis</td>
<td>Benin, Malawi, and India</td>
<td>STHs</td>
</tr>
<tr>
<td>Diakite et al.</td>
<td>2021</td>
<td>10.3390/tropicalmed6010007</td>
<td>Baseline and Impact of First-Year Intervention on Schistosoma haematobium Infection in Seasonal Transmission Foci in the Northern and Central Parts of Côte d’Ivoire</td>
<td>TROP MED INFECT DIS</td>
<td>Côte d’Ivoire</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Dieye et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005884</td>
<td>Feasibility of utilizing the SD BIOLINE Onchocerciasis IgG4 rapid test in onchocerciasis surveillance in Senegal</td>
<td>PLOS NEGLECT TROP D</td>
<td>Senegal</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Dissak-Delon et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005849</td>
<td>Adherence to ivermectin is more associated with perceptions of community directed treatment with ivermectin organization than with onchocerciasis beliefs</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Dissak-Delon et al.</td>
<td>2019</td>
<td>10.1186/s13071-019-3497-5</td>
<td>Barriers to the National Onchocerciasis Control Programme at operational level in Cameroon: a qualitative assessment of stakeholders’ views</td>
<td>PARASITE VECTOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Dissak-Delon et al.</td>
<td>2019</td>
<td>10.3390/tropicalmed4030105</td>
<td>Do Communities Really Direct in Community-Directed Interventions? A Qualitative Assessment of Beneficiaries’ Perceptions at 20 Years of Community Directed Treatment with Ivermectin in Cameroon</td>
<td>TROP MED INFECT DIS</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Djiappi-Tchame et al.</td>
<td>2021</td>
<td>10.3390/genes12060828</td>
<td>Analyses of Insecticide Resistance Genes in Aedes aegypti and Aedes albopictus Mosquito Populations from Cameroon</td>
<td>GENES-BASEL</td>
<td>Cameroon</td>
<td>Dengue; Chikungunya</td>
</tr>
<tr>
<td>Dolo et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007064</td>
<td>Integrated seroprevalence-based assessment of Wuchereria bancrofti and Onchocerca volvulus in two Lymphatic filariasis evaluation units of Mali with the SD Bioline Onchocerciasis/LF IgG4 Rapid Test</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Dorkenoo et al.</td>
<td>2015</td>
<td>10.1007/s13149-014-0408-z</td>
<td>[Lymphatic filariasis transmission assessment survey in schools three years after stopping mass drug treatment with albendazole and ivermectin in the 7 endemic districts in Togo]</td>
<td>Bull Soc Pathol Exot</td>
<td>Togo</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Dorkenoo et al.</td>
<td>2012</td>
<td>10.1111/j.1365-3156.2012.03004.x</td>
<td>Nationwide integrated mapping of three neglected tropical diseases in Togo: countrywide implementation of a novel approach</td>
<td>TROP MED INT HEALTH</td>
<td>Togo</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Dorkenoo et al.</td>
<td>2018</td>
<td>10.1186/s13071-017-2611-9</td>
<td>Molecular xenomonitoring for post-validation surveillance of Lymphatic filariasis in Togo: no evidence for active transmission</td>
<td>PARASITE VEC-TOR</td>
<td>Togo</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Ebenso BE.</td>
<td>1999</td>
<td>10.5935/0305-7518.19990012</td>
<td>Results of a 1 year Special Action Project for the Elimination of Leprosy (SAPEL) in poorly accessible areas of Akwa Ibom State, Nigeria</td>
<td>Lepr Rev</td>
<td>Nigeria</td>
<td>Leprosy</td>
</tr>
<tr>
<td>Eberhard et al.</td>
<td>2014</td>
<td>10.4269/ajtmh.13-0554</td>
<td>The Peculiar Epidemiology of Dracunculiasis in Chad</td>
<td>AM J TROP MED HYG</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Ebert et al.</td>
<td>2019</td>
<td>10.1111/tmi.13208</td>
<td>Population coverage and factors associated with participation following a mass drug administration of azithromycin for trachoma elimination in Amhara, Ethiopia</td>
<td>TROP MED INT HEALTH</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Edwards et al.</td>
<td>2006</td>
<td>10.1016/j.ophtha.2006.01.008</td>
<td>Impact of health education on active trachoma in hyperendemic rural communities in Ethiopia</td>
<td>OPHTHALMOLOGY</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Eigege et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002508</td>
<td>Long-lasting insecticidal nets are synergistic with mass drug administration for interruption of Lymphatic filariasis transmission in Nigeria</td>
<td>PLoS Negl Trop Dis</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Ekanya et al.</td>
<td>2022</td>
<td>10.1186/s13071-022-05300-z</td>
<td>The preparatory phase for ground larviciding implementation for chocerciasis control in the Meme River Basin in South West Cameroon: the COUNTDOWN Consortium alternative strategy implementation trial</td>
<td>PARASITE VECTOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Ekpo et al.</td>
<td>2022</td>
<td>10.1186/s12879-022-07811-7</td>
<td>Persistence of onchocerciasis in villages in Enugu and Ogun states in Nigeria following many rounds of mass distribution of ivermectin</td>
<td>BMC INFECT DIS</td>
<td>Nigeria</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Ella et al.</td>
<td>2022</td>
<td>10.4269/ajtmh.21-0799</td>
<td>An Integrated District Mapping Strategy for Loiasis to Enable Safe Mass Treatment for Onchocerciasis in Gabon</td>
<td>AM J TROP MED HYG</td>
<td>Gabon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Emerson et al.</td>
<td>2004</td>
<td>10.1016/S0140-6736(04)15891-1</td>
<td>Role of flies and provision of latrines in trachoma control: cluster-randomised controlled trial</td>
<td>LANCET</td>
<td>The Gambia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Eneanya et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009091</td>
<td>Progress towards onchocerciasis elimination in Côte d’Ivoire: A geospatial modelling study</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d’Ivoire</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Esse et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005839</td>
<td>Koko et les lunettes magiques : An educational entertainment tool to prevent parasitic worms and diarrheal diseases in Côte d’Ivoire</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d’Ivoire</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Feeser et al.</td>
<td>2017</td>
<td>10.4269/ajtmh.16-0519</td>
<td>Characterizing Reactivity to Onchocerca volvulus Antigens in Multiplex Bead Assays</td>
<td>Am J Trop Med Hyg</td>
<td>Global</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Fimbo et al.</td>
<td>2020</td>
<td>10.3390/jcm9051550</td>
<td>Prevalence and Correlates of Lymphatic filariasis Infection and Its Morbidity Following Mass Ivermectin and Albendazole Administration in Mkinga District, North-Eastern Tanzania</td>
<td>J CLIN MED</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Fitzpatrick et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0005037</td>
<td>Benchmarking the Cost per Person of Mass Treatment for Selected Neglected Tropical Diseases: An Approach Based on Literature Review and Meta-regression with Web-Based Software Application</td>
<td>PLoS Negl Trop Dis</td>
<td>Global</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Fitzpatrick et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005922</td>
<td>The cost-effectiveness of an eradication programme in the end game: Evidence from Guinea worm disease</td>
<td>PLOS NEGL CTROP D</td>
<td>African Region (multiple countries)</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Fitzpatrick et al.</td>
<td>2014</td>
<td>10.7326/M13-0542</td>
<td>Cost-Effectiveness of Canine Vaccination to Prevent Human Rabies in Rural Tanzania</td>
<td>ANN INTERN MED</td>
<td>United Republic of Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Forrer et al.</td>
<td>2021</td>
<td>10.1136/bmjgh-2020-003248</td>
<td>Why onchocerciasis transmission persists after 15 annual ivermectin mass drug administrations in South-West Cameroon</td>
<td>BMJ GLOB HEALTH</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Frempong et al.</td>
<td>2016</td>
<td>10.1093/cid/ciw144</td>
<td>Does Increasing Treatment Frequency Address Suboptimal Responses to Ivermectin for the Control and Elimination of River Blindness?</td>
<td>CLIN INFECT DIS</td>
<td>Ghana</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Frimpong et al.</td>
<td>2020</td>
<td>10.3390/tropicalmed5040157</td>
<td>Multiplex Recombinase Polymerase Amplification Assay for Simultaneous Detection of Treponema pallidum and Haemophilus ducreyi in Yaws-Like Lesions</td>
<td>Trop Med Infect Dis</td>
<td>Multiple countries; laboratory</td>
<td>Yaws</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Gebrezgabiher et al.</td>
<td>2022</td>
<td>10.1371/journal.pone.0271518</td>
<td>Evaluation of mass treatment with ivermectin program reach and survey coverage for onchocerciasis elimination in selected endemic areas of Ethiopia</td>
<td>PLoS One</td>
<td>Ethiopia</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Gebrezgabiher et al.</td>
<td>2020</td>
<td>10.1186/s12889-020-09344-7</td>
<td>Status of parasitological indicators and morbidity burden of onchocerciasis after years of successive implementation of mass distribution of ivermectin in selected communities of Yeki and Asosa districts, Ethiopia</td>
<td>BMC PUBLIC HEALTH</td>
<td>Ethiopia</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Gebrezgabiher et al.</td>
<td>2022</td>
<td>10.1371/journal.pone.0263625</td>
<td>Impact of ivermectin mass drug administration on burden of soil-transmitted helminths in onchocerciasis control and elimination programs, Yeki district, southwest Ethiopia</td>
<td>PLOS ONE</td>
<td>Ethiopia</td>
<td>STHs</td>
</tr>
<tr>
<td>Genet et al.</td>
<td>2022</td>
<td>10.1371/journal.pone.0268441</td>
<td>Prevalence of active trachoma and its associated factors among 1-9 years of age children from model and non-model kebeles in Dangila district, northwest Ethiopia</td>
<td>PLOS ONE</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Geopogui et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006585</td>
<td>Baseline trachoma prevalence in Guinea: Results of national trachoma mapping in 31 health districts</td>
<td>PLOS NEGLECT TROP D</td>
<td>Guinea</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Gichangi et al.</td>
<td>2015</td>
<td>10.3109/09286586.2015.1040924</td>
<td>Task Shifting for Eye Care in Eastern Africa: General Nurses as Trichiasis Surgeons in Kenya, Malawi, and Tanzania</td>
<td>OPHTHAL EPIDEMIOLOGY</td>
<td>Kenya, Malawi, and Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Goodhew et al.</td>
<td>2014</td>
<td>10.1186/1471-2334-14-216</td>
<td>Longitudinal analysis of antibody responses to trachoma antigens before and after mass drug administration</td>
<td>BMC INFECT DIS</td>
<td>Nigeria</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Goodhew et al.</td>
<td>2012</td>
<td>10.1371/journal.pntd.0001873</td>
<td>CT694 and pgp3 as Serological Tools for Monitoring Trachoma Programs</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Goodwin et al.</td>
<td>2022</td>
<td>10.1016/j.cub.2021.11.050</td>
<td>Seasonal fishery facilitates a novel transmission pathway in an emerging animal reservoir of Guinea worm</td>
<td>CURR BIOL</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Grebaut et al.</td>
<td>2016</td>
<td>10.1051/parasite/2016066</td>
<td>Simulating the elimination of sleeping sickness with an agent-based model</td>
<td>PARASITE</td>
<td>Cameroon</td>
<td>HAT</td>
</tr>
<tr>
<td>Guagliardo et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008207</td>
<td>Guinea worm in domestic dogs in Chad: A description and analysis of surveillance data</td>
<td>PLOS NEGLECT TROP D</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Guagliardo et al.</td>
<td>2021</td>
<td>10.4269/ajtih.20-1525</td>
<td>Surveillance of Human Guinea worm in Chad, 2010-2018</td>
<td>AM J TROP MED HYG</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Guagliardo et al.</td>
<td>2022</td>
<td>10.1016/S2666-6247(21)00209-3</td>
<td>Epidemiological and molecular investigations of a point-source outbreak of Dracunculus medinensis infecting humans and dogs in Chad: a cross-sectional study</td>
<td>LANCET MICROBE</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Guagliardo et al.</td>
<td>2021</td>
<td>10.4269/ajtih.19-0924</td>
<td>Correlates of Variation in Guinea worm Burden among Infected Domestic Dogs</td>
<td>AM J TROP MED HYG</td>
<td>Guinea worm</td>
<td></td>
</tr>
<tr>
<td>Gwyn et al.</td>
<td>2021</td>
<td>10.1038/s41598-021-86639-8</td>
<td>Comparison of platforms for testing antibodies to Chlamydia trachomatis antigens in the Democratic Republic of the Congo and Togo</td>
<td>SCI REP-UK</td>
<td>DRC and Togo</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Hampson et al.</td>
<td>2008</td>
<td>10.1371/journal.pntd.0000339</td>
<td>Rabies Exposures, Post-Exposure Prophylaxis and Deaths in a Region of Endemic Canine Rabies</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Hampson et al.</td>
<td>2009</td>
<td>10.1371/journal.pbio.1000053</td>
<td>Transmission Dynamics and Prospects for the Elimination of Canine Rabies</td>
<td>PLOS BIOL</td>
<td>United Republic of Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Harris et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003590</td>
<td>Unprogrammed Deworming in the Kibera Slum, Nairobi: Implications for Control of Soil-Transmitted Helminthias</td>
<td>PLOS NEGLECT TROP D</td>
<td>Kenya</td>
<td>STHs</td>
</tr>
<tr>
<td>Hastings J.</td>
<td>2016</td>
<td>10.1017/S0021932016000018</td>
<td>RUMOURS, RIOTS AND THE REJECTION OF MASS DRUG ADMINISTRATION FOR THE TREATMENT OF SCHISTOSOMIASIS IN MORO-GORO, TANZANIA</td>
<td>J Biosoc Sci</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Herrador et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006471</td>
<td>Interruption of onchocerciasis transmission in Bioko Island: Accelerating the movement from control to elimination in Equatorial Guinea</td>
<td>PLOS NEGLECT TROP D</td>
<td>Equatorial Guinea</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Hodges et al.</td>
<td>2012</td>
<td>10.1371/journal.pntd.0001694</td>
<td>Combined Spatial Prediction of Schistosomiasis and Soil-Transmitted Helminthias in Sierra Leone: A Tool for Integrated Disease Control</td>
<td>PLOS NEGLECT TROP D</td>
<td>Sierra Leone</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Hodges et al.</td>
<td>2012</td>
<td>10.1016/j.actatropica.2012.07.005</td>
<td>High level of Schistosoma mansoni infection in pre-school children in Sierra Leone highlights the need in targeting this age group for praziquantel treatment</td>
<td>ACTA TROP</td>
<td>Sierra Leone</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Hodges et al.</td>
<td>2010</td>
<td>10.1186/1756-3305-3-120</td>
<td>High coverage of mass drug administration for Lymphatic filariasis in rural and non-rural settings in the Western Area, Sierra Leone</td>
<td>PARASITE VEC-TOR</td>
<td>Sierra Leone</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Irish et al.</td>
<td>2015</td>
<td>10.2987/14-6420R.1</td>
<td>EVALUATION OF THE ATRAEDES (TM) LURE FOR COLLECTION OF CULEX QUINQUEFASCIATUS IN GRAVID TRAPS</td>
<td>J AM MOSQUITO CONTR</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Jacob et al.</td>
<td>2021</td>
<td>10.4269/ajtmh.20-1104</td>
<td>Optimization of Slash and Clear Community-Directed Control of Simulium damnosum Sensu Stricto in Northern Uganda</td>
<td>AM J TROP MED HYG</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Jacob et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006702</td>
<td>Community-directed vector control to supplement mass drug distribution for onchocerciasis elimination in the Madi mid-North focus of Northern Uganda</td>
<td>PLOS NEGLECT TROP D</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Jacob et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002342</td>
<td>Validation of a Remote Sensing Model to Identify Simulium damnosum s.l. Breeding Sites in Sub-Saharan Africa</td>
<td>PLOS NEGLECT TROP D</td>
<td>Togo and Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Jamonneau et al.</td>
<td>2010</td>
<td>10.1371/journal.pntd.000917</td>
<td>Revisiting the Immune Trypanolysis Test to Optimize Epidemiological Surveillance and Control of Sleeping Sickness in West Africa</td>
<td>PLOS NEGLECT TROP D</td>
<td>West Africa</td>
<td>HAT</td>
</tr>
<tr>
<td>Jenson et al.</td>
<td>2018</td>
<td>10.1016/j.pec.2018.01.005</td>
<td>Patient-centered communication of community treatment assistants in Tanzania predicts coverage of future mass drug administration for trachoma</td>
<td>PATIENT EDUC COUNS</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Johnson et al.</td>
<td>2021</td>
<td>10.1093/cid/ciab192</td>
<td>Model-Based Geostatistical Methods Enable Efficient Design and Analysis of Prevalence Surveys for Soil-Transmitted Helminth Infection and Other Neglected Tropical Diseases</td>
<td>Clin Infect Dis</td>
<td>Multiple countries</td>
<td>STHs</td>
</tr>
<tr>
<td>Johnson et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010189</td>
<td>Geostatistical modelling enables efficient safety assessment for mass drug administration with ivermectin in Loa loa endemic areas through a combined antibody and LoaScope testing strategy for elimination of onchocerciasis</td>
<td>PLoS Negl Trop Dis</td>
<td>Gabon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Jones et al.</td>
<td>2017</td>
<td>10.1016/j.ijid.2017.05.009</td>
<td>Lymphatic filariasis elimination efforts in Rufiji, southeastern Tanzania: decline in circulating filarial antigen prevalence in young school children after twelve rounds of mass drug administration and utilization of long-lasting insecticide-treated nets</td>
<td>INT J INFECT DIS</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Kaatano et al.</td>
<td>2015</td>
<td>10.3347/kjp.2015.53.5.535</td>
<td>Integrated Schistosomiasis and Soil-Transmitted Helminthiasis Control over Five Years on Kome Island, Tanzania</td>
<td>Korean J Parasitol</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Kabatende et al.</td>
<td>2022</td>
<td>10.1007/s40264-022-01201-3</td>
<td>Safety of Praziquantel and Albendazole Coadministration for the Control and Elimination of Schistosomiasis and Soil-Transmitted Helminths Among Children in Rwanda: An Active Surveillance Study</td>
<td>DRUG SAFETY</td>
<td>Rwanda</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Kabore et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002051</td>
<td>Predictive vs. Empiric Assessment of Schistosomiasis: Implications for Treatment Projections in Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Kagbadouno et al.</td>
<td>2011</td>
<td>10.1186/1756-3305-4-18</td>
<td>Progress towards the eradication of Tsetse from the Loos islands, Guinea</td>
<td>PARASITE VEC- TOR</td>
<td>Guinea</td>
<td>HAT</td>
</tr>
<tr>
<td>Kamara et al.</td>
<td>2019</td>
<td>10.1371/journal.pone.0224422</td>
<td>Are census data accurate for estimating coverage of a Lymphatic filariasis MDA campaign? Results of a survey in Sierra Leone</td>
<td>PLOS ONE</td>
<td>Sierra Leone</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Kambire et al.</td>
<td>2012</td>
<td>10.1051/parasite/2012194389</td>
<td>SLEEPING SICKNESS SURVEILLANCE IN CÔTE D’IVOIRE AND BURKINA FASO</td>
<td>PARASITE</td>
<td>Burkina Faso and Côte d’Ivoire</td>
<td>HAT</td>
</tr>
<tr>
<td>Kamga et al.</td>
<td>2018</td>
<td>10.1186/s13071-018-2944-2</td>
<td>Audit of the community-directed treatment with ivermectin (CDTI) for onchocerciasis and factors associated with adherence in three regions of Cameroon</td>
<td>PARASITE VEC- TOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Kamga et al.</td>
<td>2017</td>
<td>10.1186/s13071-017-2301-7</td>
<td>Important progress towards elimination of onchocerciasis in the West Region of Cameroon</td>
<td>PARASITE VEC- TOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Kamga et al.</td>
<td>2016</td>
<td>10.1186/s13071-016-1868-8</td>
<td>Still mesoendemic onchocerciasis in two Cameroonian community-directed treatment with ivermectin projects despite more than 15 years of mass treatment</td>
<td>PARASITE VEC- TOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Kamgno et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004492</td>
<td>Effect of Two or Six Doses 800 mg of Albendazole Every Two Months on Loa loa Microfilaraemia: A Double Blind, Randomized, Placebo-Controlled Trial</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Loiasis</td>
</tr>
<tr>
<td>Kaneko et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009222</td>
<td>Domestic dog demographics and estimates of canine vaccination coverage in a rural area of Zambia for the elimination of rabies</td>
<td>PLOS NEGLECT TROP D</td>
<td>Zambia</td>
<td>Rabies</td>
</tr>
<tr>
<td>Kaneko et al.</td>
<td>2021</td>
<td>10.3390/pathogens10060738</td>
<td>Immunization Coverage and Antibody Retention against Rabies in Domestic Dogs in Lusaka District, Zambia</td>
<td>PATHOGENS</td>
<td>Zambia</td>
<td>Rabies</td>
</tr>
<tr>
<td>Kariuki Njenga et al.</td>
<td>2008</td>
<td>10.1099/vir.0.2008/005413-0</td>
<td>Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa</td>
<td>J Gen Virol</td>
<td>Kenya and Comoros</td>
<td>Chikungunya</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2012</td>
<td>10.1155/2012/748540</td>
<td>Transmission of onchocerciasis in wadelai focus of northwestern Uganda has been interrupted and the disease eliminated</td>
<td>J Parasitol Res</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2014</td>
<td>10.4269/ajtmh.13-0501</td>
<td>Transmission of Onchocerca volvulus by Simulium neavei in Mount Elgon Focus of Eastern Uganda Has Been Interrupted</td>
<td>AM J TROP MED HYG</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2010</td>
<td>10.1111/j.1365-3156.2010.02501.x</td>
<td>Does onchocerciasis transmission take place in hyperendemic areas? a study from the North Region of Cameroon</td>
<td>TROP MED INT HEALTH</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2011</td>
<td>10.4269/ajtmh.2011.11-0333</td>
<td>Seventeen Years of Annual Distribution of Ivermectin Has Not Interrupted Onchocerciasis Transmission in North Region, Cameroon</td>
<td>AM J TROP MED HYG</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2010</td>
<td>10.1016/j.trstmh.2009.10.012</td>
<td>Traditional kinship system enhanced classic community-directed treatment with ivermectin (CDTI) for onchocerciasis control in Uganda</td>
<td>T ROY SOC TROP MED H</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Keenan et al.</td>
<td>2018</td>
<td>10.1371/journal.pmed.1002633</td>
<td>Mass azithromycin distribution for hyperendemic trachoma following a cluster-randomized trial: A continuation study of randomly reassigned subclusters (TANA II)</td>
<td>PLOS MED</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Kelly-Hope et al.</td>
<td>2017</td>
<td>10.1186/s13071-017-2103-y</td>
<td>Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of Lymphatic filariasis and onchocerciasis</td>
<td>PARASITE VECTOR</td>
<td>Multiple countries</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal/Journal Section</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007127</td>
<td>Community-level chlamydial serology for assessing trachoma elimination in trachoma-endemic Niger</td>
<td>PLOS NEGLECT TROP D</td>
<td>Niger</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Kisoka et al.</td>
<td>2017</td>
<td>10.1017/S0021932016000365</td>
<td>DILEMMAS OF COMMUNITY-DIRECTED MASS DRUG ADMINISTRATION FOR Lymphatic filariasis CONTROL: A QUALITATIVE STUDY FROM URBAN AND RURAL TANZANIA</td>
<td>J BIOSOC SCI</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Kisoka et al.</td>
<td>2014</td>
<td>10.1371/journal.pone.0109316</td>
<td>Factors Influencing Drug Uptake during Mass Drug Administration for Control of Lymphatic filariasis in Rural and Urban Tanzania</td>
<td>PLOS ONE</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Kisoka et al.</td>
<td>2016</td>
<td>10.1017/S002193201500024</td>
<td>COMMUNITY MEMBERS’ PERCEPTIONS OF MASS DRUG ADMINISTRATION FOR CONTROL OF Lymphatic filariasis IN RURAL AND URBAN TANZANIA</td>
<td>J BIOSOC SCI</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Knee et al.</td>
<td>2021</td>
<td>10.7554/eLife.62278</td>
<td>Effects of an urban sanitation intervention on childhood enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial</td>
<td>Elife</td>
<td>Mozambique</td>
<td>STHs</td>
</tr>
<tr>
<td>Knobel et al.</td>
<td>2008</td>
<td>10.1111/j.1365-2664.2007.01387.x</td>
<td>Trapping and vaccination of endangered Ethiopian wolves to control an outbreak of rabies</td>
<td>J APPL ECOL</td>
<td>Ethiopia</td>
<td>Rabies</td>
</tr>
<tr>
<td>Knopp et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002474</td>
<td>Elimination of Schistosomiasis Transmission in Zanzibar: Baseline Findings before the Onset of a Randomized Intervention Trial</td>
<td>PLOS NEGLECT TROP D</td>
<td>Zanzibar (United Republic of Tanzania)</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Koala et al.</td>
<td>2017</td>
<td>10.1016/j.actatropica.2016.11.003</td>
<td>Recrudescence of onchocerciasis in the Comoe valley in Southwest Burkina Faso</td>
<td>ACTA TROP</td>
<td>Burkina Faso</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Koffi et al.</td>
<td>2016</td>
<td>10.1051/parasite/2016059</td>
<td>A targeted door-to-door strategy for sleeping sickness detection in low-prevalence settings in Côte d'Ivoire</td>
<td>PARASITE</td>
<td>Côte d'Ivoire</td>
<td>HAT</td>
</tr>
<tr>
<td>Komlan et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006312</td>
<td>Onchocerca volvulus infection and serological prevalence, ocular onchocerciasis and parasite transmission in northern and central Togo after decades of Simulium damnosum s.l. vector control and mass drug administration of ivermectin</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Koroma et al.</td>
<td>2012</td>
<td>10.1186/1756-3305-5-10</td>
<td>Lymphatic filariasis mapping by Immunochromatographic Test cards and baseline microfilaria survey prior to mass drug administration in Sierra Leone</td>
<td>PARASITE VEC-TOR</td>
<td>Sierra Leone</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Koroma et al.</td>
<td>2011</td>
<td>10.3109/09286586.2011.594204</td>
<td>The Epidemiology of Trachoma in the Five Northern Districts of Sierra Leone</td>
<td>OPHTHAL EPID- MIOL</td>
<td>Sierra Leone</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Koroma et al.</td>
<td>2018</td>
<td>10.1186/s40249-018-0410-y</td>
<td>Impact of five annual rounds of mass drug administration with ivermectin on onchocerciasis in Sierra Leone</td>
<td>INFECT DIS POVERTY</td>
<td>Sierra Leone</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Koukounari et al.</td>
<td>2007</td>
<td>10.1086/520515</td>
<td>Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso</td>
<td>J INFECT DIS</td>
<td>Burkina Faso</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Krentel et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0006065</td>
<td>Review of the factors influencing the motivation of community drug distributors towards the control and elimination of neglected tropical diseases (NTDs)</td>
<td>PLoS Negl Trop Dis</td>
<td>Global</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Kukula et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007207</td>
<td>A major hurdle in the elimination of urogenital schistosomiasis revealed: Identifying key gaps in knowledge and understanding of female genital schistosomiasis within communities and local health workers</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Lakew et al.</td>
<td>2009</td>
<td>10.1371/journal.pntd.000376</td>
<td>Reduction and Return of Infectious Trachoma in Severely Affected Communities in Ethiopia</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Lakwo et al.</td>
<td>2017</td>
<td>10.1016/j.actatropica.2016.12.029</td>
<td>Interruption of the transmission of Onchocerca volvulus in the Kashoya-Kitomi focus, western Uganda by long-term ivermectin treatment and elimination of the vector Simulium neavei by larviciding</td>
<td>ACTA TROP</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Lakwo et al.</td>
<td>2006</td>
<td>10.1111/j.1365-2915.2006.00603.x</td>
<td>Transmission of Onchocerca volvulus and prospects for the elimination of its vector, the blackfly Simulium neavei in the Mpamba-Nkusi focus in Western Uganda</td>
<td>MED VET ENTO-MOL</td>
<td>Uganda</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Landoure et al.</td>
<td>2012</td>
<td>10.1371/journal.pntd.0001774</td>
<td>Significantly Reduced Intensity of Infection but Persistent Prevalence of Schistosomiasis in a Highly Endemic Region in Mali after Repeated Treatment</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2014</td>
<td>10.1371/journal.pntd.0002761</td>
<td>The Effect of Multiple Rounds of Mass Drug Administration on the Association between Ocular Chlamydia trachomatis Infection and Follicular Trachoma in Preschool-Aged Children</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Legge et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008258</td>
<td>Implementer and recipient perspectives of community-wide mass drug administration for soil-transmitted helminths in Kwale County, Kenya</td>
<td>PLOS NEGLECT TROP D</td>
<td>Kenya</td>
<td>STHs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Lemma et al.</td>
<td>2020</td>
<td>10.1111/tmi.13492</td>
<td>Challenges in the last mile of the global Guinea worm eradication program</td>
<td>TROP MED INT HEALTH</td>
<td>Global</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2019</td>
<td>10.1016/S2214-109X(19)30346-8</td>
<td>Improving public health control of schistosomiasis with a modified WHO strategy: a model-based comparison study</td>
<td>LANCET GLOB HEALTH</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Lietman et al.</td>
<td>2015</td>
<td>10.1016/j.epidem.2015.03.003</td>
<td>The distribution of the prevalence of ocular chlamydial infection in communities where trachoma is disappearing</td>
<td>EPIDEMICS-ICS-NETH</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002303</td>
<td>Assessment of Transmission in Trachoma Programs over Time Suggests No Short-Term Loss of Immunity</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Lo et al.</td>
<td>2018</td>
<td>10.1073/pnas.1708729114</td>
<td>Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis</td>
<td>P NATL ACAD SCI USA</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Longbottom et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008096</td>
<td>Quantifying geographic accessibility to improve efficiency of entomological monitoring</td>
<td>PLOS NEGLECT TROP D</td>
<td>Uganda</td>
<td>HAT</td>
</tr>
<tr>
<td>Lumbala et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008779</td>
<td>Development and implementation of a strategy for intensified screening for gambiense human African trypanosomiasis in Kongo Central province, DRC</td>
<td>PLOS NEGLECT TROP D</td>
<td>Democratic Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Lupenza et al.</td>
<td>2021</td>
<td>10.1186/s40249-021-00808-5</td>
<td>Lymphatic filariasis, infection status in Culex quinquefasciatus and Anopheles species after six rounds of mass drug administration in Masasi District, Tanzania</td>
<td>INFECT DIS POVERTY</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Lupenza et al.</td>
<td>2022</td>
<td>10.1371/journal.pone.0262693</td>
<td>Lymphatic filariasis elimination status: Wuchereria bancrofti infections in human populations and factors contributing to continued transmission after seven rounds of mass drug administration in Masasi District, Tanzania</td>
<td>PLOS ONE</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Luroni et al.</td>
<td>2017</td>
<td>10.1371/journal.pone.0189306</td>
<td>The interruption of Onchocerca volvulus and Wuchereria bancrofti transmission by integrated chemotherapy in the Obongi focus, North Western Uganda</td>
<td>PLOS ONE</td>
<td>Uganda</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Magalhaes et al.</td>
<td>2011</td>
<td>10.1371/journal.pntd.0001200</td>
<td>Mapping Helminth Co-Infection and Co-Intensity: Geostatistical Prediction in Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Mahamat et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005792</td>
<td>Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad)</td>
<td>PLOS NEGLECT TROP D</td>
<td>Chad</td>
<td>HAT</td>
</tr>
<tr>
<td>Maiga et al.</td>
<td>2022</td>
<td>10.11604/panj.2022.43.48.30512</td>
<td>Knowledge and factors influencing schistosomiasis control interventions in the hyperendemic health district of Kalabancoro in Mali, 2020</td>
<td>PAN AFR MED J</td>
<td>Mali</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Manyeh et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0007009</td>
<td>Exploring factors affecting quality implementation of Lymphatic filariasis mass drug administration in Bole and Central Gonja Districts in Northern Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Maritim et al.</td>
<td>2019</td>
<td>10.1080/16549716.2019.1570646</td>
<td>Factors shaping the implementation of the SAFE strategy for trachoma using the Consolidated Framework for Implementation Research: a systematic review</td>
<td>Glob Health Action</td>
<td>Multiple Countries</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Marks et al.</td>
<td>2018</td>
<td>10.1093/cid/cix892</td>
<td>Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum</td>
<td>CLIN INFECT DIS</td>
<td>Solomon Islands and Ghana</td>
<td>Yaws</td>
</tr>
<tr>
<td>Martin et al.</td>
<td>2021</td>
<td>10.1371/journal.pone.0255647</td>
<td>Evaluating the feasibility and acceptability of a community dialogue intervention in the prevention and control of schistosomiasis in Nampula province, Mozambique</td>
<td>PLOS ONE</td>
<td>Mozambique</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Massa et al.</td>
<td>2009</td>
<td>10.1017/S0021932008002964</td>
<td>COMMUNITY PERCEPTIONS ON THE COMMUNITY-DIRECTED TREATMENT AND SCHOOL-BASED APPROACHES FOR THE CONTROL OF SCHISTOSOMIASIS AND SOIL-TRANSMITTED HELMINTHIASIS AMONG SCHOOL-AGE CHILDREN IN LUSHOTO DISTRICT, TANZANIA</td>
<td>J BIOSOC SCI</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mazigo et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009789</td>
<td>We know about schistosomiasis but we know nothing about FGS: A qualitative assessment of knowledge gaps about female genital schistosomiasis among communities living in Schistosoma haematobium endemic districts of Zanzibar and Northwestern Tanzania</td>
<td>PLOS NEGLECT TROP D</td>
<td>Zanzibar (United Republic of Tanzania)</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Mcdonald et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008170</td>
<td>Ecology of domestic dogs Canis familiaris as an emerging reservoir of Guinea worm Dracunculus medinensis infection</td>
<td>PLOS NEGLECT TROP D</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Mduluza et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008388</td>
<td>Six rounds of annual praziquantel treatment during a national helminth control program significantly reduced schistosome infection and morbidity levels in a cohort of schoolchildren in Zimbabwe</td>
<td>PLOS NEGLECT TROP D</td>
<td>Zimbabwe</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Melese et al.</td>
<td>2004</td>
<td>10.1001/jama.292.6.721</td>
<td>Feasibility of eliminating ocular Chlamydia trachomatis with repeat mass antibiotic treatments</td>
<td>JAMA-J AM MED ASSOC</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Meurs et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003959</td>
<td>Is PCR the Next Reference Standard for the Diagnosis of Schistosoma in Stool? A Comparison with Microscopy in Senegal and Kenya</td>
<td>PLOS NEGLECT TROP D</td>
<td>Senegal; Kenya</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Midzi et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008739</td>
<td>Elimination of STH morbidity in Zimbabwe: Results of 6 years of deworming intervention for school-age children</td>
<td>PLoS Negl Trop Dis</td>
<td>Zimbabwe</td>
<td>STHs</td>
</tr>
<tr>
<td>Minetti et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008175</td>
<td>Field evaluation of DNA detection of human filarial and malaria parasites using mosquito excreta/ feces</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Minetti et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0006994</td>
<td>Elimination within reach: A cross-sectional study highlighting the factors that contribute to persistent Lymphatic filariasis in eight communities in rural Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Mishra et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007844</td>
<td>Insufficiency of annual praziquantel treatment to control Schistosoma mansoni infections in adult women: A longitudinal cohort study in rural Tanzania</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Mnkugwe et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008619</td>
<td>Efficacy and safety of praziquantel and dihydroar- temisinin piperazine combination for treatment and control of intestinal schistosomiasis: A randomized, non-inferiority clinical trial</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Moraga et al.</td>
<td>2015</td>
<td>10.1186/s13071-015-1166-x</td>
<td>Modelling the distribution and transmission intensity of Lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling</td>
<td>Parasit Vectors</td>
<td>Multiple countries</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Morters et al.</td>
<td>2014</td>
<td>10.1111/1365-2664.12279</td>
<td>The demography of free-roaming dog populations and applications to disease and population control</td>
<td>J APPL ECOL</td>
<td>South Africa and Indonesia</td>
<td>Rabies</td>
</tr>
<tr>
<td>Morters et al.</td>
<td>2015</td>
<td>10.1136/vr.102975</td>
<td>Effective vaccination against rabies in puppies in rabies endemic regions</td>
<td>VET REC</td>
<td>South Africa and United Republic of Tanzania</td>
<td>Rabies</td>
</tr>
<tr>
<td>Mpanya et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003686</td>
<td>From Health Advice to Taboo: Community Perspectives on the Treatment of Sleeping Sickness in the Democratic Republic of Congo, a Qualitative Study</td>
<td>PLOS NEGLECT TROP D</td>
<td>Democratic Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Mshelbwala et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009617</td>
<td>Rabies epidemiology, prevention and control in Nigeria: Scoping progress towards elimination</td>
<td>PLOS NEGLECT TROP D</td>
<td>Nigeria</td>
<td>Rabies</td>
</tr>
<tr>
<td>Mtuy et al.</td>
<td>2021</td>
<td>10.1017/S0021932020000553</td>
<td>Understanding hard-to-reach communities: local perspectives and experiences of trachoma control among the pastoralist Maasai in northern Tanzania</td>
<td>J BIOSOC SCI</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Mudenda et al.</td>
<td>2022</td>
<td>10.1186/s41936-022-00265-y</td>
<td>Diagnostic accuracy of Schistosoma immunochromatographic IgG/IgM rapid test in the detection of schistosomiasis in Zambia</td>
<td>J BASIC APPL ZOOL</td>
<td>Zambia</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Muhsin et al.</td>
<td>2022</td>
<td>10.3390/tropicalmed7110347</td>
<td>The Indispensability of Snail Control for Accelerating Schistosomiasis Elimination: Evidence from Zanzibar</td>
<td>Trop Med Infect Dis</td>
<td>Zanzibar (Tanzania)</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Mulenga et al.</td>
<td>2019</td>
<td>10.4269/ajtmh.18-0382</td>
<td>Integration of Human African Trypanosomiasis Control Activities into Primary Health Services in the Democratic Republic of the Congo: A Qualitative Study of Stakeholder Perceptions</td>
<td>AM J TROP MED HYG</td>
<td>Democratic Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Musuva et al.</td>
<td>2021</td>
<td>10.1371/journal.pone.0253115</td>
<td>Unprotected water sources and low latrine coverage are contributing factors to persistent hotspots for schistosomiasis in western Kenya</td>
<td>PLoS One</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Muthiani et al.</td>
<td>2015</td>
<td>10.1016/j.prevetmed.2015.04.007</td>
<td>Low coverage of central point vaccination against dog rabies in Bamako, Mali</td>
<td>PREV VET MED</td>
<td>Mali</td>
<td>Rabies</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Mutuku et al.</td>
<td>2019</td>
<td>10.4269/ajtmh.19-0089</td>
<td>A Search for Snail-Related Answers to Explain Differences in Response of Schistosoma mansoni to Praziquantel Treatment among Responding and Persistent Hotspot Villages along the Kenyan Shore of Lake Victoria</td>
<td>Am J Trop Med Hyg</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Mwakitalu et al.</td>
<td>2013</td>
<td>10.1016/j.actatropica.2013.10.004</td>
<td>Urban Lymphatic filariasis in the city of Tanga, Tanzania, after seven rounds of mass drug administration</td>
<td>ACTA TROP</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Mwanga et al.</td>
<td>2015</td>
<td>10.3347/kjp.2015.53.5.553</td>
<td>Improved Socio-Economic Status of a Community Population Following Schistosomiasis and Intestinal Worm Control Interventions on Kome Island, North-Western Tanzania</td>
<td>Korean J Parasitol</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Mwanga et al.</td>
<td>2015</td>
<td>10.3347/kjp.2015.53.5.561</td>
<td>Improved Perceptions and Practices Related to Schistosomiasis and Intestinal Worm Infections Following PHAST Intervention on Kome Island, North-Western Tanzania</td>
<td>KOREAN J PARASITOL</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>N’Djetchi et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005993</td>
<td>The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d’Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d’Ivoire</td>
<td>HAT</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Nalugwa et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003796</td>
<td>Single Versus Double Dose Praziquantel Comparison on Efficacy and Schistosoma mansoni Re-Infection in Preschool-Age Children in Uganda: A Randomized Controlled Trial</td>
<td>PLoS Negl Trop Dis</td>
<td>Uganda</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Nana-Djeunga et al.</td>
<td>2020</td>
<td>10.3390/pathogens9121043</td>
<td>Collateral Impact of Community-Directed Treatment with Ivermectin (CDTI) on Onchocerciasis on Parasitological Indicators of Loa loa Infection</td>
<td>PATHOGENS</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Nana-Djeunga et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005633</td>
<td>First evidence of Lymphatic filariasis transmission interruption in Cameroon: Progress towards elimination</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Nash et al.</td>
<td>2018</td>
<td>10.1093/trstmh/try096</td>
<td>Trachoma prevalence remains below threshold in five districts after stopping mass drug administration: results of five surveillance surveys within a hyperendemic setting in Amhara, Ethiopia</td>
<td>T ROY SOC TROP MED H</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Ndao et al.</td>
<td>2015</td>
<td>10.1007/s13149-014-0370-9</td>
<td>[Can we overcome schistosomiasis? A Senegalese example]</td>
<td>Bull Soc Pathol Exot</td>
<td>Senegal</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Ndisabiye et al.</td>
<td>2020</td>
<td>10.4314/ahs.v20i1.23</td>
<td>Association of environmental risk factors and trachoma in Gashoho Health District, Burundi</td>
<td>AFR HEALTH SCI</td>
<td>Burundi</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Ng’etich et al.</td>
<td>2016</td>
<td>10.1186/s13071-016-1368-x</td>
<td>A cross-sectional study on schistosomiasis and soil-transmitted helminths in Mbita district, western Kenya using different copromicroscopic techniques</td>
<td>Parasit Vectors</td>
<td>Kenya</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Ngazoa-Kakou et al.</td>
<td>2011</td>
<td>10.1186/s13071-016-1368-x</td>
<td>A cross-sectional study on schistosomiasis and soil-transmitted helminths in Mbita district, western Kenya using different copromicroscopic techniques</td>
<td>Parasit Vectors</td>
<td>Kenya</td>
<td>Schistosomiasis; STHs</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>DOI</th>
<th>Article Title</th>
<th>Journal</th>
<th>Location</th>
<th>NTD of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikiema et al.</td>
<td>2018</td>
<td>10.1016/j.actatropica.2018.05.013</td>
<td>Onchocerciasis prevalence, human migration and risks for onchocerciasis elimination in the Upper Mouhoun, Nakambe and Nazinon river basins in Burkina Faso</td>
<td>ACTA TROP</td>
<td>Burkina Faso</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Njenga et al.</td>
<td>2017</td>
<td>10.1186/s13071-017-2044-5</td>
<td>Assessment of Lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya</td>
<td>PARASITE VECTOR</td>
<td>Kenya</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Njenga et al.</td>
<td>2011</td>
<td>10.1186/1756-3305-4-90</td>
<td>Sustained reduction in prevalence of Lymphatic filariasis infection in spite of missed rounds of mass drug administration in an area under mosquito nets for malaria control</td>
<td>PARASITE VECTOR</td>
<td>Kenya</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Njomo et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008499</td>
<td>Addressing barriers of community participation and access to mass drug administration for Lymphatic filariasis elimination in Coastal Kenya using a participatory approach</td>
<td>PLOS NEGLECT TROP D</td>
<td>Kenya</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Njomo et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0009012</td>
<td>Implementation challenges and opportunities for improved mass treatment uptake for Lymphatic filariasis elimination: Perceptions and experiences of community drug distributors of coastal Kenya</td>
<td>PLOS NEGLECT TROP D</td>
<td>Kenya</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Nkieri et al.</td>
<td>2020</td>
<td>10.3390/tropicalmed5020053</td>
<td>An Active Follow-up Strategy for Serological Suspects of Human African Trypanosomiasis with Negative Parasitology Set up by a Health Zone Team in the Democratic Republic of Congo</td>
<td>TROP MED INFECT DIS</td>
<td>Democratic Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>Nolna et al.</td>
<td>2020</td>
<td>10.3390/tropicalmed5040172</td>
<td>Integration of Traditional Healers in Human African Trypanosomiasis Case Finding in Central Africa: A Quasi-Experimental Study</td>
<td>TROP MED INFECT DIS</td>
<td>Multiple countries; Cameroon, Central African Republic (CAR); Chad; Democratic Republic of the Congo; Equatorial Guinea; Gabon; Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Nsagha et al.</td>
<td>2011</td>
<td>10.4081/jphia.2011.e10</td>
<td>Social stigma as an epidemiological determinant for leprosy elimination in Cameroon</td>
<td>J PUBLIC HEALTH AFR</td>
<td>Cameroon</td>
<td>Leprosy</td>
</tr>
<tr>
<td>Odhiambo et al.</td>
<td>2014</td>
<td>10.1371/journal.pntd.0002784</td>
<td>Low Levels of Awareness Despite High Prevalence of Schistosomiasis among Communities in Nyalenda Informal Settlement, Kisumu City, Western Kenya</td>
<td>PLOS NEGLECT TROP D</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Okorie et al.</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002416</td>
<td>Lymphatic filariasis in Nigeria; Micro-stratification Overlap Mapping (MOM) as a Prerequisite for Cost-Effective Resource Utilization in Control and Surveillance</td>
<td>PLOS NEGLECT TROP D</td>
<td>Nigeria</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Onzo-Aboki et al.</td>
<td>2019</td>
<td>10.1016/j.actatropica.2019.01.004</td>
<td>Human schistosomiasis in Benin: Countrywide evidence of Schistosoma haematobium predominance</td>
<td>ACTA TROP</td>
<td>Benin</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Ortu et al.</td>
<td>2017</td>
<td>10.1093/ijnheal/ihx025</td>
<td>Mass drug administration in Central Equatoria, South Sudan: results and suggestions for future distributions</td>
<td>Int Health</td>
<td>South Sudan</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Ortu et al.</td>
<td>2017</td>
<td>10.4269/ajtmh.16-0671</td>
<td>Countrywide Reassessment of Schistosoma mansoni Infection in Burundi Using a Urine-Circulating Cathodic Antigen Rapid Test: Informing the National Control Program</td>
<td>AM J TROP MED HYG</td>
<td>Burundi</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Oswald et al.</td>
<td>2020</td>
<td>10.1016/S2214-109X(20)30344-2</td>
<td>Patterns of individual non-treatment during multiple rounds of mass drug administration for control of soil-transmitted helminths in the TUMIKIA trial, Kenya: a secondary longitudinal analysis</td>
<td>Lancet Glob Health</td>
<td>Kenya</td>
<td>STHs</td>
</tr>
<tr>
<td>Owusu et al.</td>
<td>2015</td>
<td>10.1093/trstmh/trv070</td>
<td>Evaluation of human and mosquito based diagnostic tools for defining endpoints for elimination of Anopheles transmitted Lymphatic filariasis in Ghana</td>
<td>T ROY SOC TROP MED H</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Palmer et al.</td>
<td>2014</td>
<td>10.1371/journal.pntd.0002742</td>
<td>A mixed methods study of a health worker training intervention to increase syndromic referral for gambiense human African trypanosomiasis in South Sudan</td>
<td>PLoS Negl Trop Dis</td>
<td>South Sudan</td>
<td>HAT</td>
</tr>
<tr>
<td>Pam et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0006004</td>
<td>Is mass drug administration against Lymphatic filariasis required in urban settings? The experience in Kano, Nigeria</td>
<td>PLOS NEGLECT TROP D</td>
<td>Nigeria</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Parisi et al.</td>
<td>2019</td>
<td>10.1186/s12889-019-8091-4</td>
<td>Factors associated with relevant knowledge of intestinal schistosomiasis and intention to participate in treatment campaigns: a cross sectional survey among school children at Ijinga Island on Lake Victoria, North-Western Tanzania</td>
<td>BMC PUBLIC HEALTH</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Parke et al.</td>
<td>2022</td>
<td>10.1093/inthealth/iha042</td>
<td>Behaviour Insight Shadowing: examining daily life settings for the prevention of neglected tropical disease</td>
<td>INT HEALTH</td>
<td>Nigeria; the Democratic Republic of Congo; Guinea Bissau</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Parker et al.</td>
<td>2013</td>
<td>10.1017/S0021932012000466</td>
<td>WILL MASS DRUG ADMINISTRATION ELIMINATE Lymphatic filariasis? EVIDENCE FROM NORTHERN COASTAL TANZANIA</td>
<td>J BIOSOC SCI</td>
<td>United Republic of Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Paulo et al.</td>
<td>2020</td>
<td>10.1016/j.parepi.2020.e00183</td>
<td>Clinical, serological and DNA testing in Bengo Province, Angola further reveals low filarial endemicity and opportunities for disease elimination</td>
<td>PARASITE EP-IDEM CONT</td>
<td>Angola</td>
<td>Onchocerciasis; Lymphatic filariasis; Loiasis</td>
</tr>
<tr>
<td>Pearson et al.</td>
<td>2021</td>
<td>10.1016/S2666-5247(21)00150-6</td>
<td>Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study</td>
<td>LANCET MICROBE</td>
<td>Multiple countries; Gabon; United Republic of Tanzania; Zimbabwe</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Pelletreau et al.</td>
<td>2011</td>
<td>10.1371/journal.pntd.0001380</td>
<td>The Field-Testing of a Novel Integrated Mapping Protocol for Neglected Tropical Diseases</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali and Senegal</td>
<td>Lymphatic filariasis; Trachoma; Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Percoma et al.</td>
<td>2018</td>
<td>10.1186/s13071-017-2609-3</td>
<td>Impact of an integrated control campaign on tsetse populations in Burkina Faso</td>
<td>PARASITE VECTOR</td>
<td>Burkina Faso</td>
<td>HAT</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Phaff et al.</td>
<td>2003</td>
<td></td>
<td>Characteristics and treatment outcomes of leprosy patients detected during a leprosy elimination campaign in Mozambique compared with routinely detected patients</td>
<td>LEPROSY REV</td>
<td>Mozambique</td>
<td>Leprosy</td>
</tr>
<tr>
<td>Pion et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008322</td>
<td>The impact of four years of semiannual treatments with albendazole alone on Lymphatic filariasis and soil-transmitted helminth infections: A community-based study in the Democratic Republic of the Congo</td>
<td>PLOS NEGLECT TROP D</td>
<td>Democratic Republic of Congo</td>
<td>Lymphatic filariasis; STHs</td>
</tr>
<tr>
<td>Pion et al.</td>
<td>2020</td>
<td>10.1016/S1473-3099(19)30554-7</td>
<td>Implications for annual retesting after a test-and-not-treat strategy for onchocerciasis elimination in areas co-endemic with Loa loa infection: an observational cohort study</td>
<td>LANCET INFECT DIS</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Prince-Gueva et al.</td>
<td>2018</td>
<td>10.4269/ajtmh.17-0809</td>
<td>Comparison of PCR Methods for Onchocerca volvulus Detection in Skin Snip Biopsies from the Tshopo Province, Democratic Republic of the Congo</td>
<td>AM J TROP MED HYG</td>
<td>Democratic Republic of Congo</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Radvan et al.</td>
<td>2022</td>
<td>10.1093/inthealth/hac045</td>
<td>Resuming NTD activities in the context of COVID-19: an investigation into the advantages of risk assessment processes to mitigate the transmission of COVID-19 during NTD delivery</td>
<td>INT HEALTH</td>
<td>African Region (multiple countries)</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Raimon et al.</td>
<td>2021</td>
<td>10.3390/pathogens10101329</td>
<td>Slash and Clear, a Community-Based Vector Control Method to Reduce Onchocerciasis Transmission by Simulium sirbanum in Maridi, South Sudan: A Prospective Study</td>
<td>PATHOGENS</td>
<td>South Sudan</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Rakers et al.</td>
<td>2020</td>
<td>10.4269/ajtmh.20-0368</td>
<td>Assessing Hypoendemic Onchocerciasis in Loa loa Endemic Areas of Southeast Nigeria</td>
<td>AM J TROP MED HYG</td>
<td>Nigeria</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Rayaisse et al.</td>
<td>2010</td>
<td>10.1371/journal.pntd.000632</td>
<td>Prospects for the Development of Odour Baits to Control the Tsetse Flies Glossina tachinoides and G-palpalis s.l.</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d'Ivoire and Burkina Faso</td>
<td>HAT</td>
</tr>
<tr>
<td>Rebollo et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003642</td>
<td>Elimination of Lymphatic filariasis in The Gambia</td>
<td>PLOS NEGLECT TROP D</td>
<td>The Gambia</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Richards et al.</td>
<td>2005</td>
<td>10.1179/136485905X19838</td>
<td>Significant decrease in the prevalence of Wuchereria bancrofti infection in anopheline mosquitoes following the addition of albendazole to annual, ivermectin-based, mass treatments in Nigeria</td>
<td>ANN TROP MED PARASIT</td>
<td>Nigeria</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Richards et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008620</td>
<td>Identifying correlates of Guinea worm (Dracunculus medinensis) infection in domestic dog populations</td>
<td>PLOS NEGLECT TROP D</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Richardus et al.</td>
<td>2021</td>
<td>10.1016/S2214-109X(20)30396-X</td>
<td>Leprosy post-exposure prophylaxis with single-dose rifampicin (LPEP): an international feasibility programme</td>
<td>LANCET GLOB HEALTH</td>
<td>United Republic of Tanzania (and other non-African countries)</td>
<td>Leprosy</td>
</tr>
<tr>
<td>Rilkoff</td>
<td>2013</td>
<td>10.1371/journal.pntd.0002312</td>
<td>Exploring Gender Dimensions of Treatment Programmes for Neglected Tropical Diseases in Uganda</td>
<td>PLOS NEGLECT TROP D</td>
<td>Uganda</td>
<td>Multiple NTDs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rubenstein et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009285</td>
<td>Community-based Guinea worm surveillance in Chad: Evaluating a system at the intersection of human and animal disease</td>
<td>PLOS NEGLECT TROP D</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Sacolo-Gwebu et al.</td>
<td>2019</td>
<td>10.1186/s40249-019-0561-5</td>
<td>Prevalence and risk factors of schistosomiasis and soil-transmitted helminthiasis among preschool aged children (1-5years) in rural KwaZulu-Natal, South Africa: a cross-sectional study</td>
<td>INFECT DIS POVERTY</td>
<td>South Africa</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Sacolo-Gwebu et al.</td>
<td>2019</td>
<td>10.1186/s12879-019-4253-3</td>
<td>Knowledge, attitudes and practices on schistosomiasis and soil-transmitted helminths among caregivers in Ingwavuma area in uMkhanyakude district, South Africa</td>
<td>BMC INFECT DIS</td>
<td>South Africa</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>Saleh et al.</td>
<td>2018</td>
<td>10.2987/17-6709.1</td>
<td>HABITAT CHARACTERISTICS FOR IMMATURE STAGES OF Aedes aegypti IN ZANZIBAR CITY, TANZANIA</td>
<td>J AM MOSQUITO CONTR</td>
<td>United Republic of Tanzania</td>
<td>Dengue; Chikungunya</td>
</tr>
<tr>
<td>Salomao et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005787</td>
<td>Epidemiology, clinical features and risk factors for human rabies and animal bites during an outbreak of rabies in Maputo and Matola cities, Mozambique, 2014: Implications for public health interventions for rabies control</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mozambique</td>
<td>Rabies</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Sanders et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0005658</td>
<td>Burden of trachoma in five counties of Eastern Equatoria state, South Sudan: Results from population-based surveys</td>
<td>PLoS Negl Trop Dis</td>
<td>South Sudan</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Sanders et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007491</td>
<td>Prevalence of trachoma within refugee camps serving South Sudanese refugees in White Nile State, Sudan: Results from population-based surveys</td>
<td>PLOS NEGLECT TROP D</td>
<td>South Sudan</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Seck et al.</td>
<td>2019</td>
<td>10.3390/pathogens8030113</td>
<td>Serological Data Shows Low Levels of Chikungunya Exposure in Senegalese Nomadic Pastoralists</td>
<td>Pathogens</td>
<td>Senegal</td>
<td>Chikungunya</td>
</tr>
<tr>
<td>Seidman et al.</td>
<td>2014</td>
<td>10.1093/ije/duy062</td>
<td>Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control</td>
<td>INT J EPIDEMIOL</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Senghor et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0004557</td>
<td>Impact of Annual Praziquantel Treatment on Urogenital Schistosomiasis in a Seasonal Transmission Focus in Central Senegal</td>
<td>PLOS NEGLECT TROP D</td>
<td>Senegal</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Senyonjo et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009744</td>
<td>Surveillance for peri-elimination trachoma recrudescence: Exploratory studies in Ghana</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Senyonjo et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0007027</td>
<td>Serological and PCR-based markers of ocular Chlamydia trachomatis transmission in northern Ghana after elimination of trachoma as a public health problem</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ghana</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Sesay et al.</td>
<td>2014</td>
<td>10.1186/1756-3305-7-14</td>
<td>Schistosoma mansoni infection after three years of mass drug administration in Sierra Leone</td>
<td>PARASITE VECTOR</td>
<td>Sierra Leone</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Shen et al.</td>
<td>2017</td>
<td>10.1186/s12879-017-2738-5</td>
<td>Protocol and baseline data for a multi-year cohort study of the effects of different mass drug treatment approaches on functional morbidities from schistosomiasis in four African countries</td>
<td>BMC Infect Dis</td>
<td>Kenya; United Republic of Tanzania; Niger; Mozambique</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Sime et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006325</td>
<td>Results of a confirmatory mapping tool for Lymphatic filariasis endemicity classification in areas where transmission was uncertain in Ethiopia</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ethiopia</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Simonsen et al.</td>
<td>2013</td>
<td>10.1186/1471-2334-13-335</td>
<td>Lymphatic filariasis control in Tanzania: effect of six rounds of mass drug administration with ivermectin and albendazole on infection and transmission</td>
<td>BMC INFECT DIS</td>
<td>Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Simonsen et al.</td>
<td>2010</td>
<td>10.1371/journal.pntd.000696</td>
<td>Lymphatic filariasis Control in Tanzania: Effect of Repeated Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission</td>
<td>PLOS NEGLECT TROP D</td>
<td>Tanzania</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Slaven et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008401</td>
<td>A cost-analysis of conducting population-based prevalence surveys for the validation of the elimination of trachoma as a public health problem in Amhara, Ethiopia</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Snyder et al.</td>
<td>2019</td>
<td>10.1093/inthealth/ihz035</td>
<td>Smartphone photography as a possible method of post-validation trachoma surveillance in resource-limited settings</td>
<td>INT HEALTH</td>
<td>Burkina Faso</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Sokolow et al.</td>
<td>2017</td>
<td>10.1098/rstb.2016.0127</td>
<td>Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns</td>
<td>PHILOS T R SOC B</td>
<td>Sub-sahara Africa; Multiple countries (looked as a whole)</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Sousa-Figueiredo et al.</td>
<td>2012</td>
<td>10.1371/journal.pntd.0001864</td>
<td>Performance and Safety of Praziquantel for Treatment of Intestinal Schistosomiasis in Infants and Preschool Children</td>
<td>PLOS NEGLECT TROP D</td>
<td>Uganda</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Sreenivasan et al.</td>
<td>2017</td>
<td>10.4269/ajtmh.16-1026</td>
<td>Recurrence of Guinea worm Disease in Chad after a 10-Year Absence: Risk Factors for Human Cases Identified in 2010-2011</td>
<td>AM J TROP MED HYG</td>
<td>Chad</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>Stanton et al.</td>
<td>2014</td>
<td>10.1111/tmi.12266</td>
<td>Quantifying filariasis and malaria control activities in relation to Lymphatic filariasis elimination: a multiple intervention score map (MISM) for Malawi</td>
<td>TROP MED INT HEALTH</td>
<td>Malawi</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Stewart et al.</td>
<td>2019</td>
<td>10.4269/ajtmh.19-0450</td>
<td>Progress to Eliminate Trachoma as a Public Health Problem in Amhara National Regional State, Ethiopia: Results of 152 Population-Based Surveys</td>
<td>AM J TROP MED HYG</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Stoller et al.</td>
<td>2011</td>
<td>10.1016/j.inhe.2011.03.004</td>
<td>Efficacy of latrine promotion on emergence of infection with ocular Chlamydia trachomatis after mass antibiotic treatment: a cluster-randomized trial</td>
<td>INT HEALTH</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Tabi et al.</td>
<td>2018</td>
<td>10.11604/pamj.2018.30.74.15676</td>
<td>Soil-transmitted Helminth infection in the Tiko Health District, South West Region of Cameroon: a post-intervention survey on prevalence and intensity of infection among primary school children</td>
<td>PAN AFR MED J</td>
<td>Cameroon</td>
<td>STHs</td>
</tr>
<tr>
<td>Tadesse et al.</td>
<td>2017</td>
<td>10.1371/journal.pntd.0006080</td>
<td>Effect of water, sanitation and hygiene interventions on active trachoma in North and South Wollo zones of Amhara Region, Ethiopia: A Quasi-experimental study</td>
<td>PLOS NEGLECT TROP D</td>
<td>Ethiopia</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Tirados et al.</td>
<td>2020</td>
<td>10.1371/journal.pntd.0008270</td>
<td>Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of human African trypanosomiasis in the Democratic Republic of the Congo</td>
<td>PLOS NEGLECT TROP D</td>
<td>Democratic Republic of Congo</td>
<td>HAT</td>
</tr>
<tr>
<td>Tiruneh et al.</td>
<td>2020</td>
<td>10.1186/s12889-020-08904-1</td>
<td>Identification of transmission foci of Schistosoma mansoni: narrowing the intervention target from district to transmission focus in Ethiopia</td>
<td>BMC PUBLIC HEALTH</td>
<td>Ethiopia</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Traore et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006289</td>
<td>Prevalence of trachoma in the Kalinclude region of Mali eight years after stopping mass drug administration</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Traore et al.</td>
<td>2012</td>
<td>10.1371/journal.pntd.0001825</td>
<td>Proof-of-Principle of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: Final Results of a Study in Mali and Senegal</td>
<td>PLOS NEGLECT TROP D</td>
<td>Mali and Senegal</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Trippler et al.</td>
<td>2022</td>
<td>10.1186/s40249-021-00928-y</td>
<td>GPS-based fine-scale mapping surveys for schistosomiasis assessment: a practical introduction and documentation of field implementation</td>
<td>INFECT DIS POVERTY</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Trippler et al.</td>
<td>2022</td>
<td>10.1186/s13071-022-05404-6</td>
<td>Fine-scale mapping of Schistosoma haematobium infections at the school and community levels and intermediate host snail abundance in the north of Pemba Island: baseline cross-sectional survey findings before the onset of a 3-year intervention study</td>
<td>PARASITE VECTOR</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Trippler et al.</td>
<td>2021</td>
<td>10.1371/journal.pntd.0009127</td>
<td>Impact of seven years of mass drug administration and recrudescence of Schistosoma haematobium infections after one year of treatment gap in Zanzibar: Repeated cross-sectional studies</td>
<td>PLOS NEGLECT TROP D</td>
<td>United Republic of Tanzania</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Tupps et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010410</td>
<td>Community-wide prevalence and intensity of soil-transmitted helminthiasis and Schistosoma mansoni in two districts of Sierra Leone</td>
<td>PLoS Negl Trop Dis</td>
<td>Sierra Leone</td>
<td>Schistosomiasis; STHs</td>
</tr>
<tr>
<td>van der Werf et al.</td>
<td>2002</td>
<td>10.1046/j.1365-3156.2002.00823.x</td>
<td>Evaluation of staff performance and material resources for integrated schistosomiasis control in Northern Senegal</td>
<td>TROP MED INT HEALTH</td>
<td>Senegal</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Van et al.</td>
<td>2020</td>
<td>10.3390/diagnostics10050328</td>
<td>Improving Access to Diagnostics for Schistosomiasis Case Management in Oyo State, Nigeria: Barriers and Opportunities</td>
<td>DIAGNOSTICS</td>
<td>Nigeria</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Vroom et al.</td>
<td>2015</td>
<td>10.1177/2050312115594083</td>
<td>Data reporting constraints for the Lymphatic filariasis mass drug administration activities in two districts in Ghana: A qualitative study</td>
<td>SAGE OPEN MED</td>
<td>Ghana</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Wambura et al.</td>
<td>2019</td>
<td>10.1016/j.vaccine.2019.05.035</td>
<td>Rabies vaccine and immunoglobulin supply and logistics: Challenges and opportunities for rabies elimination in Kenya</td>
<td>VACCINE</td>
<td>Kenya</td>
<td>Rabies</td>
</tr>
<tr>
<td>Wanji et al.</td>
<td>2018</td>
<td>10.1371/journal.pntd.0006750</td>
<td>Impact of repeated annual community directed treatment with ivermectin on loiasis parasitological indicators in Cameroon: Implications for onchocerciasis and Lymphatic filariasis elimination in areas co-endemic with Loa loa in Africa</td>
<td>PLoS Negl Trop Dis</td>
<td>Cameroon</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Wanji et al.</td>
<td>2019</td>
<td>10.1371/journal.pntd.0007192</td>
<td>Mapping of Lymphatic filariasis in loiasis areas: A new strategy shows no evidence for Wuchereria bancrofti endemicity in Cameroon</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Wanji et al.</td>
<td>2015</td>
<td>10.1186/s13071-015-1283-6</td>
<td>Relationship between oral declaration on adherence to ivermectin treatment and parasitological indicators of onchocerciasis in an area of persistent transmission despite a decade of mass drug administration in Cameroon</td>
<td>PARASITE VECTOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Wanji et al.</td>
<td>2015</td>
<td>10.1186/s13071-015-0817-2</td>
<td>Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment</td>
<td>PARASITE VECTOR</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>West et al.</td>
<td>2017</td>
<td>10.1371/journal.pone.0178595</td>
<td>Treating village newcomers and travelers for trachoma: Results from ASANTE cluster randomized trial</td>
<td>PLOS ONE</td>
<td>Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>West et al.</td>
<td>2015</td>
<td>10.3109/09286586.2015.1010687</td>
<td>Risk of Infection with Chlamydia trachomatis from Migrants to Communities Undergoing Mass Drug Administration for Trachoma Control</td>
<td>OPHTHAL EPIDEMIOLOGY</td>
<td>United Republic of Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Wiegand et al.</td>
<td>2017</td>
<td>10.1093/infectdis/jix496</td>
<td>A Persistent Hotspot of Schistosoma mansoni Infection in a Five-Year Randomized Trial of Praziquantel Preventative Chemotherapy Strategies</td>
<td>J Infectious Diseases</td>
<td>Kenya</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Wiegand et al.</td>
<td>2021</td>
<td>10.1093/ofid/ofab179</td>
<td>Control and Elimination of Schistosomiasis as a Public Health Problem: Thresholds Fail to Differentiate Schistosomiasis Morbidity Prevalence in Children</td>
<td>OPEN FORUM INFECTION DISEASES</td>
<td>Burkina Faso, Mali, Niger, United Republic of Tanzania, Uganda, and Zambia; Multiple countries</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Wilson et al.</td>
<td>2016</td>
<td>10.1371/journal.pntd.0005198</td>
<td>Evaluation of Lymphatic filariasis and Onchocerciasis in Three Senegalese Districts Treated for Onchocerciasis with Ivermectin</td>
<td>PLOS NEGLECT TROPID</td>
<td>Senegal</td>
<td>Onchocerciasis; Lymphatic filariasis</td>
</tr>
<tr>
<td>Worku et al.</td>
<td>2022</td>
<td>10.1155/2022/1417804</td>
<td>Knowledge, Attitude, and Practice of Community towards an Onchocerciasis Elimination Program from South West Ethiopia</td>
<td>J TROPID MEDICINE-US</td>
<td>Ethiopia</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Yaro et al.</td>
<td>2022</td>
<td>10.1155/2022/3117646</td>
<td>Evaluation of School-Based Health Education Intervention on the Incidence of Soil-Transmitted Helminths in Pupils of Rural Communities of Eastern Kogi State, North Central Nigeria</td>
<td>J Parasitology Research</td>
<td>Nigeria</td>
<td>STHs</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>DOI</td>
<td>Article Title</td>
<td>Journal</td>
<td>Location</td>
<td>NTD of Interest</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Yokoly et al.</td>
<td>2020</td>
<td>10.1371/journal.pone.0231541</td>
<td>Low transmission of Wuchereria bancrofti in cross-border districts of Côte d’Ivoire: A great step towards Lymphatic filariasis elimination in West Africa</td>
<td>PLOS ONE</td>
<td>Côte d’Ivoire</td>
<td>Lymphatic filariasis</td>
</tr>
<tr>
<td>Young et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003450</td>
<td>Identification of human semiochemicals attractive to the major vectors of onchocerciasis</td>
<td>PLoS Negl Trop Dis</td>
<td>Burkina Faso and Mexico</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Zambrano et al.</td>
<td>2015</td>
<td>10.1371/journal.pntd.0003774</td>
<td>Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania</td>
<td>PLOS NEGLECT TROP D</td>
<td>Tanzania</td>
<td>Trachoma</td>
</tr>
<tr>
<td>Atekem et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0010591</td>
<td>Evaluating the impact of alternative intervention strategies in accelerating onchocerciasis elimination in an area of persistent transmission in the West Region of Cameroon</td>
<td>PLOS NEGLECT TROP D</td>
<td>Cameroon</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Hoekstra et al.</td>
<td>2022</td>
<td>10.1371/journal.pntd.0011008</td>
<td>Limited efficacy of repeated praziquantel treatment in Schistosoma mansoni infections as revealed by highly accurate diagnostics, PCR and UCP-LF CAA (RePST trial)</td>
<td>PLOS NEGLECT TROP D</td>
<td>Côte d’Ivoire</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Sturt et al.</td>
<td>2022</td>
<td>10.1093/ofid/ofac586</td>
<td>The Presence of Hemoglobin in Cervicovaginal Lavage Is Not Associated With Genital Schistosomiasis in Zambian Women From the BILHIV Study</td>
<td>OPEN FORUM INFECT DI</td>
<td>Zambia</td>
<td>Schistosomiasis</td>
</tr>
</tbody>
</table>
Annex E

Most prevalent themes identified by both reviewers.

<table>
<thead>
<tr>
<th>NTD</th>
<th>Category</th>
<th>% Agreement</th>
<th>Cohen’s Kappa</th>
<th>p-value</th>
<th>Most commonly identified themes identified by two reviewers (listed alphabetically)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea worm</td>
<td>Non-intervention survey</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>General challenges, Geographic or location trends, Risk factors, Surveillance system, Vector-specific outcomes</td>
</tr>
<tr>
<td></td>
<td>Community health workers</td>
<td></td>
<td></td>
<td></td>
<td>General challenges, Geographic or location trends, Risk factors</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>95.5%</td>
<td>0.867</td>
<td><0.001</td>
<td>General challenges, Risk factors, Surveillance system, WASH (excluding trachoma)</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td>95.5%</td>
<td>0.867</td>
<td><0.001</td>
<td>Cost analysis, General challenges, Vector-specific outcomes, WASH (excluding trachoma)</td>
</tr>
<tr>
<td>HAT</td>
<td>Non-intervention survey</td>
<td>81.1%</td>
<td>0.482</td>
<td>0.0237</td>
<td>General challenges, Innovations, Risk factors, Surveillance system, Vector-specific outcomes</td>
</tr>
<tr>
<td></td>
<td>General approaches</td>
<td></td>
<td></td>
<td></td>
<td>General challenges, Programme planning & decision making, Risk factors, Surveillance system</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td>81.1%</td>
<td>0.482</td>
<td>0.0237</td>
<td>Case management, General approaches, General challenges, Intervention outcomes, Programme planning & decision making, Vector-specific outcomes</td>
</tr>
<tr>
<td>NTD</td>
<td>Category</td>
<td>% Agreement</td>
<td>Cohen’s Kappa</td>
<td>p-value</td>
<td>Most commonly identified themes identified by two reviewers (listed alphabetically)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Least reported*</td>
<td>Non-intervention survey</td>
<td>90.9%</td>
<td>0.694</td>
<td>0.0011</td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geographic or location trends</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vector-specific outcomes</td>
</tr>
<tr>
<td></td>
<td>Case management</td>
<td>95.5%</td>
<td>0.861</td>
<td><0.001</td>
<td>Adverse events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surveillance system</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Co-endemicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Health education, behaviour, perspectives, KAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vector-specific outcomes</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>MDA</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Co-endemicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention coverage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>Co-endemicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Community health workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme planning & decision making</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Innovations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention coverage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vector-specific outcomes</td>
</tr>
<tr>
<td>NTD</td>
<td>Category</td>
<td>% Agreement</td>
<td>Cohen's Kappa</td>
<td>p-value</td>
<td>Most commonly identified themes identified by two reviewers (listed alphabetically)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Multiple NTDs**</td>
<td>Non-intervention survey</td>
<td>86.4%</td>
<td>0.595</td>
<td>0.0014</td>
<td>Community health workers, General challenges, Health education, behaviour, perspectives, KAP, Intervention coverage, Programme planning & decision making</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>Co-endemicity, Cost analysis, COVID-19 related topics, General approaches, General challenges, Programme planning & decision making</td>
</tr>
<tr>
<td>MDA</td>
<td></td>
<td>100.0%</td>
<td>1</td>
<td><0.001</td>
<td>Co-endemicity, General approaches, General challenges, Intervention outcomes, Risk factors</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>Vector</td>
<td>81.8%</td>
<td>0.506</td>
<td>0.0051</td>
<td>General approaches, Intervention coverage, Intervention outcomes, Vector-specific outcomes</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Co-endemicity, General approaches, Laboratory & diagnostics, Programme planning & decision making, Vector-specific outcomes</td>
</tr>
<tr>
<td>NTD</td>
<td>Category</td>
<td>% Agreement</td>
<td>Cohen’s Kappa</td>
<td>p-value</td>
<td>Most commonly identified themes identified by two reviewers (listed alphabetically)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Rabies</td>
<td>Vaccination campaign</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Case management</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey</td>
<td>100.0%</td>
<td>1</td>
<td><0.001</td>
<td>Case management</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Health education or behaviour</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>72.7%</td>
<td>0.224</td>
<td>0.294</td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>72.7%</td>
<td>0.224</td>
<td>0.294</td>
<td>General approaches</td>
</tr>
<tr>
<td>NTD</td>
<td>Category</td>
<td>% Agreement</td>
<td>Cohen’s Kappa</td>
<td>p-value</td>
<td>Most commonly identified themes identified by two reviewers (listed alphabetically)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Health education, behaviour, perspectives, KAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Innovations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WASH (excluding trachoma)</td>
</tr>
<tr>
<td>STHs</td>
<td>Non-intervention survey</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Case management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme planning & decision making</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>90.9%</td>
<td>0.741</td>
<td><0.001</td>
<td>Adverse events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention coverage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme planning & decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td>Trachoma</td>
<td>MDA</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WASH (excluding trachoma)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>Case management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme planning & decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors</td>
</tr>
<tr>
<td></td>
<td>Non-intervention survey</td>
<td>81.8%</td>
<td>0.482</td>
<td>0.0237</td>
<td>General challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Innovations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laboratory & diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surveillance system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme planning & decision making</td>
</tr>
</tbody>
</table>

* Diseases with fewer than 5% of the included studies were grouped together as “Least reported.” Diseases in this group included Buruli ulcer, chikungunya, echinococcosis, leishmaniasis, leprosy, loiasis, scabies, and yaws.

** Studies focused on two or more NTDs.
Annex F.1
Summary of Cochrane Results

<table>
<thead>
<tr>
<th>Disease(s)</th>
<th>Review author (year) Title</th>
<th>NTD Review status</th>
<th>Authors of relevant included articles</th>
<th>Title</th>
<th>Topic area</th>
<th>Location</th>
<th>Captured</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adams et al. (2004)</td>
<td>Efficacy of albendazole against the whipworm Trichuris trichiura – a randomized, controlled trial</td>
<td>Albendazole vs placebo</td>
<td>South Africa</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adegnika et al. (2014)</td>
<td>Randomized, controlled, assessor-blind clinical trial to assess the efficacy of single-versus repeated-dose albendazole to treat Ascaris lumbricoides, Trichuris trichiura, and Hookworm Infection</td>
<td>Albendazole 1 day vs 2 days vs 3 days</td>
<td>Gabon</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Albonico et al. (1994)</td>
<td>A randomized controlled trial comparing mebendazole and albendazole against Ascaris, Trichuris and hookworm infections</td>
<td>Albendazole vs. mebendazole</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Albonico et al. (2002)</td>
<td>Evaluation of the efficacy of pyrantel-oxantel for the treatment of soil-transmitted nematode infections</td>
<td>mebendazole vs. pyrantel-oxantel single dose vs. placebo</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Albonico et al. (2003)</td>
<td>Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar</td>
<td>mebendazole vs. levamisole vs. combination vs. placebo</td>
<td>Zanzibar</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knopp et al. (2010)</td>
<td>Albendazole and mebendazole administered alone or in combination with ivermectin against Trichuris trichiura: a randomized controlled trial</td>
<td>Albendazole vs. mebendazole</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Legesse et al. (2002)</td>
<td>Efficacy of albendazole and mebendazole in the treatment of Ascaris and Trichuris infections</td>
<td>Albendazole vs. mebendazole</td>
<td>Ethiopia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Legesse et al. (2004)</td>
<td>Comparative efficacy of albendazole and three brands of mebendazole in the treatment of ascariasis and trichuriasis</td>
<td>Albendazole vs. mebendazole</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rossignol et al. (1983)</td>
<td>Albendazole: placebo controlled study in 870 patients with intestinal helminthiasis</td>
<td>Albendazole dosing</td>
<td>Multiple</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silber et al. (2017)</td>
<td>Efficacy and safety of a single-dose mebendazole 500 mg chewable, rapidly-disintegrating tablet for Ascaris lumbricoides and Trichuris trichiura infection treatment in pediatric patients: a double-blind, randomized, placebo-controlled, phase</td>
<td>Mebendazole vs. placebo</td>
<td>Ethiopia and Rwanda</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speich et al. (2014)</td>
<td>Oxantel pamoate–albendazole for Trichuris trichiura infection.</td>
<td>albendazole vs. mebendazole vs. oxantel pamoat</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stephenson et al. (1989)</td>
<td>Treatment with a single dose of albendazole improves growth of Kenyan schoolchildren with hookworm, Trichuris trichiura, and Ascaris lumbricoides infections.</td>
<td>Albendazole vs. placebo</td>
<td>Kenya</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stephenson et al. (1993)</td>
<td>Weight gain of Kenyan school children infected with hookworm, Trichuris trichiura and Ascaris lumbricoides is improved following once- or twice-yearly treatment with albendazole. American Institute of Nutrition</td>
<td>Albendazole vs. placebo</td>
<td>Kenya</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wimmersberger et al. (2018)</td>
<td>Efficacy and safety of ivermectin against Trichuris trichiura in preschool- and school-aged children: a randomized controlled dose-finding trial.</td>
<td>Ivermectin doses vs. placebo</td>
<td>Côte d’Ivoire</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>Disease(s)</td>
<td>Review author (year) Title</td>
<td>Authors of relevant included articles</td>
<td>Title</td>
<td>Topic area</td>
<td>Location</td>
<td>Captured</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kisoka et al. (2016) Community members perceptions of mass drug administration for control of Lymphatic filariasis in rural and urban Tanzania</td>
<td></td>
<td>Kisoka et al. (2016) Community members perceptions of mass drug administration for control of Lymphatic filariasis in rural and urban Tanzania</td>
<td>MDA experience and perceptions</td>
<td>Tanzania</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kisoka et al. (2017) Dilemmas of community-directed mass drug administration for Lymphatic filariasis: a qualitative study from urban and rural Tanzania</td>
<td></td>
<td>Kisoka et al. (2017) Dilemmas of community-directed mass drug administration for Lymphatic filariasis: a qualitative study from urban and rural Tanzania</td>
<td>MDA community delivery stakeholder perceptions</td>
<td>Tanzania</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manyeh et al. (2020) Exploring factors affecting quality implementation of Lymphatic filariasis mass drug administration in Bole and Central Gonja Districts in Northern Ghana</td>
<td></td>
<td>Manyeh et al. (2020) Exploring factors affecting quality implementation of Lymphatic filariasis mass drug administration in Bole and Central Gonja Districts in Northern Ghana</td>
<td>MDA quality improvement</td>
<td>Ghana</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Njomo et al. (2014) Increasing coverage in mass drug administration for Lymphatic filariasis elimination in an urban setting: a study of Malindi Town, Kenya</td>
<td></td>
<td>Njomo et al. (2014) Increasing coverage in mass drug administration for Lymphatic filariasis elimination in an urban setting: a study of Malindi Town, Kenya</td>
<td>Increasing treatment coverage</td>
<td>Kenya</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Njomo et al. (2020a) Addressing barriers of community participation and access to mass drug administration for Lymphatic filariasis elimination in Coastal Kenya using a participatory approach</td>
<td></td>
<td>Njomo et al. (2020a) Addressing barriers of community participation and access to mass drug administration for Lymphatic filariasis elimination in Coastal Kenya using a participatory approach</td>
<td>MDA barriers</td>
<td>Kenya</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Njomo et al. (2020b) Implementation challenges and opportunities for improved mass treatment uptake for Lymphatic filariasis elimination: perceptions and experiences of community drug distributors of coastal Kenya</td>
<td></td>
<td>Njomo et al. (2020b) Implementation challenges and opportunities for improved mass treatment uptake for Lymphatic filariasis elimination: perceptions and experiences of community drug distributors of coastal Kenya</td>
<td>MDA challenges and opportunities</td>
<td>Kenya</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Disease(s)</td>
<td>Review author (year)</td>
<td>NTD Review status</td>
<td>Authors of relevant included articles</td>
<td>Title</td>
<td>Topic area</td>
<td>Location</td>
<td>Captured</td>
<td>Included</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Wamae et al. (2011)</td>
<td></td>
<td></td>
<td>Evaluation of effectiveness of diethylcarbamazine/albendazole combination in reduction of Wuchereria bancrofti infection using multiple infection parameters</td>
<td>Post-treatment microfilarial load</td>
<td>Kenya</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gower et al. (2013)</td>
<td>Trachomatous trichiasis clamp vs standard bilamellar tarsal rotation instrumentation for trichiasis surgery</td>
<td>Comparison of surgical treatments</td>
<td>Tanzania</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rajak et al. (2011a)</td>
<td>Surgery versus epilation for the treatment of minor trichiasis in Ethiopia: a randomised controlled noninferiority trial</td>
<td>Epilation to surgery comparison</td>
<td>Ethiopia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rajak et al. (2011b)</td>
<td>Absorbable versus silk sutures for surgical treatment of trachomatous trichiasis in Ethiopia: a randomised controlled trial</td>
<td>Absorbable vs. non-absorbable sutures comparison</td>
<td>Ethiopia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Burton et al. (2005a)</td>
<td></td>
<td></td>
<td>A randomised controlled trial of azithromycin following surgery for trachoma trichiasis in the Gambia</td>
<td>Antibiotic treatment</td>
<td>The Gambia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>West et al. (2006)</td>
<td></td>
<td></td>
<td>Single-dose azithromycin prevents trichiasis recurrence following surgery: randomized trial in Ethiopia</td>
<td>Antibiotic treatment</td>
<td>Ethiopia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Bowman et al. (2000)</td>
<td></td>
<td></td>
<td>Should trichiasis surgery be offered in the village? A community randomised trial of village vs. health centre-based surgery</td>
<td>Surgery setting (health center vs. village)</td>
<td>The Gambia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Alemayehu et al. (2004)</td>
<td></td>
<td></td>
<td>Surgery for trichiasis by ophthalmologists versus integrated eye care workers: a randomized trial</td>
<td>Comparison of surgical personnel</td>
<td>Ethiopia</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>Disease(s)</td>
<td>Review author (year) Title</td>
<td>NTD Review status</td>
<td>Authors of relevant included articles</td>
<td>Topic area</td>
<td>Location</td>
<td>Captured</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Trachoma</td>
<td>Rabiu et al. (2012) Environmental sanitary interventions for preventing active trachoma # articles: 6</td>
<td>Include</td>
<td>Abdou et al. (2010), How much is not enough? A community randomized trial of a Water and Health Education programme for Trachoma and Ocular C. trachomatis infection in Niger</td>
<td>Health promotion for WASH and trachoma</td>
<td>Niger</td>
<td>No</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stoller et al. (2011) Efficacy of latrine promotion on emergence of infection with ocular Chlamydia trachomatis after mass antibiotic treatment: a cluster-randomized trial</td>
<td></td>
<td>Stoller et al. (2011) Efficacy of latrine promotion on emergence of infection with ocular Chlamydia trachomatis after mass antibiotic treatment: a cluster-randomized trial</td>
<td>WASH/latrines</td>
<td>Ethiopia</td>
<td>Yes</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Dental caries</td>
<td>Schwendicke et al. (2021) Interventions for treating cavitated or dentine carious lesions</td>
<td>Exclude</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea & STH</td>
<td>Majorin et al. (2019) Interventions to improve disposal of child faeces for preventing diarrhoea and soil-transmitted helminth infection</td>
<td>Exclude</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Annex F.2

Summary of Cochrane funding for included reviews

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Disease(s)</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conterno et al. (2020)</td>
<td>Ascariasis (STH)</td>
<td>Department for International Development (DFID), UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Brazil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil</td>
</tr>
<tr>
<td>Taylor et al. (2022)</td>
<td>Lymphatic filariasis</td>
<td>Foreign, Commonwealth, and Development Office (FCDO), UK</td>
</tr>
<tr>
<td>Macfarlane et al. (2019)</td>
<td>Lymphatic filariasis</td>
<td>DFID, UK</td>
</tr>
<tr>
<td>Burton et al. (2015)</td>
<td>Trachoma</td>
<td>Wellcome Trust, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Institute for Health Research (NIHR), UK</td>
</tr>
<tr>
<td>Ejere et al. (2015)</td>
<td>Trachoma</td>
<td>Effective Health Care Alliance Programme, International Health Division, Liverpool School of Tropical Medicine, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Eye Centre, Nigeria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Eye Institute, National Institutes of Health, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Institute for Health Research (NIHR), UK</td>
</tr>
<tr>
<td>Rabiu et al. (2012)</td>
<td>Trachoma</td>
<td>Cochrane Health Promotion and Public Health Field, Australia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UK Cochrane Centre, UK</td>
</tr>
</tbody>
</table>
Annex G

List of all unique funders

<table>
<thead>
<tr>
<th>Funding organization</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achievement Rewards for College Scientists (ARCS) Foundation - Atlanta chapter</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>African Academy of Sciences (AAS)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>African Field Epidemiology Network</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>African Population and Health Research Centre (APHRC)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>African Research Network for Neglected Tropical Diseases (ARNTD)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>African Union (PATTEC)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>AgriSense BCS Ltd.</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Al Ansari Exchange (UAE)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Alborada Trust</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Alcon Research Institute</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Alliance for Accelerating Excellence in Science in Africa (AESA)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Americas</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Amref South Sudan</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Apple Computer, Inc.</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Arab Fund for Economic and Social Development (AFESD)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Arts and Humanities Research Council (AHRC) (UK)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Atlanta Woman’s Club</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Australian Trade and Investment Commission</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>BASF Corporation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Belgian Academie de Recherche et d’Enseignement Superieur (ARES-CCD)</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Belgian Development Cooperation</td>
<td>6</td>
<td>0.55%</td>
</tr>
<tr>
<td>Bernard Osher Foundation (USA)</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>103</td>
<td>9.40%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Bodri Foundation (USA)</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Bouamatou Foundation (Mauritania)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Bundesministerum fur Bildung und Forschung (BMBF)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Canadian International Development Agency (CIDA)</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Carlos Slim Foundation (Brazil)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Carter Center</td>
<td>26</td>
<td>2.37%</td>
</tr>
<tr>
<td>Centers for Disease Control (CDC)</td>
<td>18</td>
<td>1.64%</td>
</tr>
<tr>
<td>Centre for Research on Filariasis and other Tropical Diseases (CRFilMT) (Cameroon)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Ceva Santé Animale</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Chadwick Trust</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Chevron Corporation (USA)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Children’s Investment Fund Foundation (CIFF)</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>CISA (Language Institute)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>CISA – Health Research Center of Angola</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Clarke Cares Foundation</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Coalition for Operational Research in Neglected Tropical Diseases (CORNTD)</td>
<td>15</td>
<td>1.37%</td>
</tr>
<tr>
<td>Commission of the European Community</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Commonwealth Scholarship Commission</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Conrad N Hilton Foundation</td>
<td>6</td>
<td>0.55%</td>
</tr>
<tr>
<td>Crawford Family Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>DAHW Deutsche Lepra und Tuberkulosehilfe e.V. (Germany)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Danish International Development Agency (DANIDA)</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>DBL - Centre for Health Research and Development, Denmark</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Delta Medical Supplies</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>DELTAS Africa</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Denmark Research Council</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Doris Duke Charitable Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Dutch Research Council (NWO)</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Edgar O. Dixon Charitable Trust</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Elfenworks Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Ethiopian field Epidemiology training program</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>European Commission</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>European Foundations Initiative for Neglected Tropical Diseases (EFINTD)</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>European Science Foundation</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>European Union</td>
<td>26</td>
<td>2.37%</td>
</tr>
<tr>
<td>FHI360</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>First Congregational Church</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Ford Foundation</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Foundation Source</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Fred Hollows Foundation (Australia)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Fundacion Anesvad</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>German Research Foundation (DFG)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Gilead Sciences</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Girl Scouts of America (specific troop)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Glaxo Smith Kline Foundations</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>GlaxoSmithKline (GSK)</td>
<td>8</td>
<td>0.73%</td>
</tr>
<tr>
<td>Global Aviation Holdings</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Global Challenges Research Fund</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Global Health Education Consortium, Inc. (USA)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Global Health Innovative Technology Fund</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Global Leadership Training Programme in Africa (GLTP)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Google, Inc.</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Gordon Smith Travelling Fellowship</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Australia</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Burkina Faso</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>Government of Cameroon</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Canada</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Government of Chad</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of China</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Denmark</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Ethiopia</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Government of France</td>
<td>8</td>
<td>0.73%</td>
</tr>
<tr>
<td>Government of Germany</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Ghana</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Guinea</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of India</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Ivory Coast</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Japan</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Kenya</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Oman</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Saudi Arabia</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Spain</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Sudan</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of Switzerland</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Government of Tanzania</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of the Republic of Zambia</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of the UK - Other</td>
<td>5</td>
<td>0.46%</td>
</tr>
<tr>
<td>Government of the United Arab Emirates</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Government of the US - Other</td>
<td>6</td>
<td>0.55%</td>
</tr>
<tr>
<td>Government of Togo</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Government of Uganda</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Harper-Inglis Memorial Trust Fund</td>
<td>5</td>
<td>0.46%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Harris myCFO Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Health and Development International (HDI)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Heinz Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Helen Keller International (HKI)</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Hokudai Center for Zoonosis Control in Zambia</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Hugh J. Andersen Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>IKARE (UK)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Individual sponsors/donors</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Institute of Tropical Medicine, Antwerp (Belgium)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Instituto de Salud Carlos III (ISCIII)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>International Development Research Centre (Canada)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>International Federation of Anti-Leprosy Associations (ILEP)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>International Fund for Agricultural Development (IFAD)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>International Fund for Animal Welfare (IFAW)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>International Research and Development</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>International Society for Infectious Diseases (ISID)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Islamic Development Bank (Saudi Arabia)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Japan Society for the Promotion of Science (JSPS) (Japan)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>John C. and Karyl Kay Hughes Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>John D. and Catherine T. MacArthur Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>John P. Hussman Foundation, Inc.</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>John-Henry Memorial Fund</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>JV Schiro Zavela Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Karolinska Institute</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Katholischer Akademischer Ausländer-Dienst</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Kendeda Fund</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Kenya Medical Research Institute</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>KFW (KfW Development Bank) (Germany)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Korea International Co-operation Agency (KOICA)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>L’Organisation pour la Prévention de la Cécité (OPC) (Francophone Africa)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>La Fondation Veuve Emile Metz-Tesch (Luxembourg)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Le Kaicedrat (Senegal)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Leslie Family Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Leverhulme Trust (UK)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Lincoln Park Zoo (Chicago)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Lindsay Fellowship for Research in Africa</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Lions Club</td>
<td>8</td>
<td>0.73%</td>
</tr>
<tr>
<td>Lions-Carter Partnership</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>London Centre for Neglected Tropical Diseases</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Margaret A. Cargill Philanthropies (MACP)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>McKenna Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Mectizan Donation Program</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Medical Missionary Institute (Missionsarztliches Institute)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Medical Research Council of South Africa</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Merck</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Monsanto Company</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Mount Pleasant Lutheran Church</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>National Democratic Institute for International Affairs</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>National Research Foundation (NRF) (South Africa)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>National Security Education Program and Institute for International Education</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Network of Biomedical Research on Tropical Diseases</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Nigerian Institute of Medical Research</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>NIH & NSF</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Noguchi Memorial Institute for Medical Research (NMIMR) (Ghana)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>None or Not Available</td>
<td>63</td>
<td>5.75%</td>
</tr>
<tr>
<td>Noor Dubai Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Norwegian Development Agency, NORDA</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Novartis</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>OPEC Fund for International Development</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>ORBIS international Ethiopia</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>PATH Diagnostics</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Peierls Foundation</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Pew Charitable Trusts</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Pfizer</td>
<td>10</td>
<td>0.91%</td>
</tr>
<tr>
<td>Proctor Foundation</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Queen Elizabeth Diamond Jubilee Trust</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td>9</td>
<td>0.82%</td>
</tr>
<tr>
<td>Rexroth Foundation (Germany)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>River Blindness Foundation (RBF)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>River Blindness Foundation (RBF)</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Robert and Shirley Harris Family Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Roman Catholic Diocese of Joliet</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Royal College of Veterinary Surgeons (UK)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Royal families</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Royal Society of Tropical Medicine and Hygiene</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>RTI International</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Rudolf Geigy Foundation</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>S.H.O.D. LLC</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Sanofi</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Schweizerischer Nationalfonds (SNF)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>SIDA</td>
<td>6</td>
<td>0.55%</td>
</tr>
<tr>
<td>Sightsavers</td>
<td>13</td>
<td>1.19%</td>
</tr>
<tr>
<td>Sir Emeka Offor Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Sir Halley Stewart Trust</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>South Asia Research Fund</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Spanish Academy of Dermatology and Venereology (AEDV)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Special Programme for Research and Training in Tropical Diseases (TDR)</td>
<td>18</td>
<td>1.64%</td>
</tr>
<tr>
<td>St. Thomas Aquinas Parish</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Stahl Family Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>That Man May See</td>
<td>6</td>
<td>0.55%</td>
</tr>
<tr>
<td>The END Fund</td>
<td>5</td>
<td>0.46%</td>
</tr>
<tr>
<td>The Royal Society</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>The Task Force for Global Health</td>
<td>23</td>
<td>2.10%</td>
</tr>
<tr>
<td>The Union Against Tuberculosis and Lung Disease</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>The Wellcome Trust</td>
<td>35</td>
<td>3.19%</td>
</tr>
<tr>
<td>Thrasher Research Fund</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>UBS Optimus Foundation</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>UK Department for International Development (DFID)</td>
<td>65</td>
<td>5.93%</td>
</tr>
<tr>
<td>UK Research and Innovation (UKRI)</td>
<td>28</td>
<td>2.55%</td>
</tr>
<tr>
<td>UKAID</td>
<td>5</td>
<td>0.46%</td>
</tr>
<tr>
<td>Unclear/unknown</td>
<td>9</td>
<td>0.82%</td>
</tr>
<tr>
<td>United Nations</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>United Nations Children’s Fund (UNICEF)</td>
<td>10</td>
<td>0.91%</td>
</tr>
<tr>
<td>Funding organization</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>United Nations Development Programme (UNDP)</td>
<td>5</td>
<td>0.46%</td>
</tr>
<tr>
<td>United States Agency for International Development (USAID)</td>
<td>66</td>
<td>6.02%</td>
</tr>
<tr>
<td>University</td>
<td>53</td>
<td>4.84%</td>
</tr>
<tr>
<td>US National Institutes of Health</td>
<td>52</td>
<td>4.74%</td>
</tr>
<tr>
<td>Vanguard Charitable Endowment Program</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Vestergaard Frandsen</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Volta River Authority</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>West African Economic and Monetary Union (Union Économique et Monétaire Ouest-Africaine)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>William H. Donner Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Women’s Leadership Foundation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>World Animal Protection (WAP)</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>World Bank</td>
<td>7</td>
<td>0.64%</td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td>36</td>
<td>3.28%</td>
</tr>
<tr>
<td>World Society for the Protection of Animals (WSPA)</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>YKK Corporation</td>
<td>2</td>
<td>0.18%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1096</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Annex H

Overall funder list from 1990-2022

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Achievement Rewards for College Scientists (ARCS) Foundation - Atlanta chapter</td>
<td></td>
</tr>
<tr>
<td>African Academy of Sciences (AAS)</td>
<td></td>
</tr>
<tr>
<td>African Field Epidemiology Network</td>
<td></td>
</tr>
<tr>
<td>African Population and Health Research Centre (APHRC)</td>
<td></td>
</tr>
<tr>
<td>African Research Network for Neglected Tropical Diseases (ARNTD)</td>
<td></td>
</tr>
<tr>
<td>African Union (PATTEC)</td>
<td></td>
</tr>
<tr>
<td>AgriSense BCS Ltd.</td>
<td></td>
</tr>
<tr>
<td>Al Ansari Exchange (UAE)</td>
<td></td>
</tr>
<tr>
<td>Alborada Trust</td>
<td></td>
</tr>
<tr>
<td>Alliance for Accelerating Excellence in Science in Africa (AESA)</td>
<td></td>
</tr>
<tr>
<td>Americas</td>
<td></td>
</tr>
<tr>
<td>Amref South Sudan</td>
<td></td>
</tr>
<tr>
<td>Apple Computer, Inc.</td>
<td></td>
</tr>
<tr>
<td>Arab Fund for Economic and Social Development (AFESD)</td>
<td></td>
</tr>
<tr>
<td>Arts and Humanities Research Council (AHRC) (UK)</td>
<td></td>
</tr>
<tr>
<td>Atlanta Woman’s Club</td>
<td></td>
</tr>
<tr>
<td>Australian Trade and Investment Commission</td>
<td></td>
</tr>
</tbody>
</table>

Grand Total: **2**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BASF Corporation</td>
<td></td>
</tr>
<tr>
<td>Belgian Academie de Recherche et d’Enseignement Superieur (ARES-CCD)</td>
<td></td>
</tr>
<tr>
<td>Belgian Development Cooperation</td>
<td></td>
</tr>
<tr>
<td>Bernard Osher Foundation (USA)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>15</td>
<td>4</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodri Foundation (USA)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouamatou Foundation (Mauritania)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundesministerum fur Bildung und Forschung (BMBF)</td>
<td></td>
</tr>
<tr>
<td>Canadian International Development Agency (CIDA)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlos Slim Foundation (Brazil)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carter Center</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Centers for Disease Control (CDC)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Centre for Research on Filariasis and other Tropical Diseases (CRFilMT) (Cameroon)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceva Santé Animale</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chadwick Trust</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevron Corporation (USA)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children’s Investment Fund Foundation (CIFF)</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISA (Language Institute)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISA – Health Research Center of Angola</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarke Cares Foundation</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Coalition for Operational Research in Neglected</td>
<td></td>
<td>Grand</td>
<td></td>
</tr>
<tr>
<td>Tropical Diseases (CORNTD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Commission of the European Community</td>
<td></td>
</tr>
<tr>
<td>Commonwealth Scholarship Commission</td>
<td></td>
</tr>
<tr>
<td>Conrad N Hilton Foundation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Crawford Family Foundation</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DAHW Deutsche Lepra und Tuberkulosehilfe e.V. (Germany)</td>
<td></td>
</tr>
<tr>
<td>Danish International Development Agency (DANIDA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DBL - Centre for Health Research and Development,</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Delta Medical Supplies</td>
<td></td>
</tr>
<tr>
<td>DELTAS Africa</td>
<td></td>
</tr>
<tr>
<td>Denmark Research Council</td>
<td></td>
</tr>
<tr>
<td>Doris Duke Charitable Foundation</td>
<td></td>
</tr>
<tr>
<td>Dutch Research Council (NWO)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Edgar O. Dixon Charitable Trust</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elfenworks Foundation</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ethiopian field Epidemiology training program</td>
<td></td>
</tr>
<tr>
<td>European Commission</td>
<td></td>
</tr>
<tr>
<td>European Foundations Initiative for Neglected</td>
<td></td>
</tr>
<tr>
<td>Tropical Diseases (EFINTD)</td>
<td></td>
</tr>
<tr>
<td>European Science Foundation</td>
<td></td>
</tr>
<tr>
<td>European Union</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHI360</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>First Congregational Church</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford Foundation</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Foundation Source</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fred Hollows Foundation (Australia)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fundacion Anesvad</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>General Electric Company</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>German Research Foundation (DFG)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Girl Scouts of America (specific troop)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Glaxo Smith Kline Foundations</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Global Aviation Holdings</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Global Challenges Research Fund</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Global Health Education Consortium, Inc. (USA)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Global Health Innovative Technology Fund</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Global Leadership Training Programme in Africa (GLTP)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Google, Inc.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Gordon Smith Travelling Fellowship</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Harper-Inglis Memorial Trust Fund</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Harris myCFO Foundation</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Health and Development International (HDI)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Heinz Foundation</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Helen Keller International (HKI)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1 1 4</td>
</tr>
<tr>
<td>Hokudai Center for Zoonosis Control in Zambia</td>
<td></td>
<td>2 2</td>
</tr>
<tr>
<td>Hugh J. Andersen Foundation</td>
<td></td>
<td>2 2</td>
</tr>
<tr>
<td>IKARE (UK)</td>
<td>1</td>
<td></td>
<td>1 1 1</td>
</tr>
<tr>
<td>Individual sponsors/donors</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2 2</td>
</tr>
<tr>
<td>Institute of Tropical Medicine, Antwerp (Belgium)</td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td>Instituto de Salud Carlos III (ISCIII)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>International Development Research Centre (Canada)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>International Federation of Anti-Leprosy Associations (ILEP)</td>
<td>1</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>International Fund for Agricultural Development (IFAD)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>International Fund for Animal Welfare (IFAW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Research and Development</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>International Society for Infectious Diseases (ISID)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>Islamic Development Bank (Saudi Arabia)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>Japan Society for the Promotion of Science (JSPS) (Japan)</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>John C. and Karyl Kay Hughes Foundation</td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td>John D. and Catherine T. MacArthur Foundation</td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td>John P. Hussman Foundation, Inc.</td>
<td></td>
<td>1 1 2</td>
</tr>
</tbody>
</table>
| John-Henry Memorial Fund | 1 1
<p>| |
|---|------| | |
| JV Schiro Zavala Foundation | 1 | 1 | | 2 |
| Karolinska Institute | 1 | | 1 |
| Katholischer Akademischer Ausländer-Dienst | 1 |
| Kendeda Fund | | | | | | 1 | 1 | | | | | | | | | | | | | | | | | 2 |
| Kenya Medical Research Institute | 1 |
| KFW (KfW Development Bank) (Germany) | 1 |
| Korea International Co-operation Agency (KOICA) | 1 |
| L’Organisation pour la Prévention de la Cécité (OPC) (Francophone Africa) | | 1 |
| La Fondation Veuve Emile Metz-Tesch (Luxembourg) | | 1 |
| Le Kaicedrat (Senegal) | 1 | | 1 |
| Leslie Family Foundation | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | 2 |
| Leverhulme Trust (UK) | 1 |
| Lincoln Park Zoo (Chicago) | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | 2 |
| Lindsay Fellowship for Research in Africa | 1 |
| Lions Club | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | 8 |
| Lions-Carter Partnership | 3 |
| London Centre for Neglected Tropical Diseases | 1 |
| Margaret A. Cargill Philanthropies (MACP) | 1 |
| McKenna Foundation | 2 |
| Mectizan Donation Program | 1 |
| Medical Missionary Institute | 1 |
(Missionsarztliches Institute)																							1					
Medical Research Council of South Africa																										2	2	
Monsanto Company																											2	
Mount Pleasant Lutheran Church																											2	
National Democratic Institute for International Affairs																											2	
National Research Foundation (NRF) (South Africa)																											1	
National Science Foundation																											1	
National Security Education Program and Institute for International Education																											1	
Network of Biomedical Research on Tropical Diseases																											2	
New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD)																											1	
Nigerian Institute of Medical Research																											1	
NIH & NSF																											3	
Noguchi Memorial Institute for Medical Research (NMIMR) (Ghana)																											2	
None or Not Available																											17	60
Noor Dubai Foundation																											1	2
Norwegian Development Agency, NORDA																											1	
OPEC Fund for International Development																											3	
ORBIS international Ethiopia																											1	
PATH Diagnostics																											1	
Peierls Foundation																											1	
Pew Charitable Trusts																											2	
--	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------					
Pharmaceutical or Similar	1	1																										
Proctor Foundation																												
Queen Elizabeth Diamond Jubilee Trust	1																						13					
Research to Prevent Blindness	1																											
Research to Prevent Blindness																												
Rexroth Foundation (Germany)																												
River Blindness Foundation (RBF)	1																											
River Blindness Foundation (RBF)																												
Robert and Shirley Harris Family Foundation																												
Roman Catholic Diocese of Joliet																												
Royal College of Veterinary Surgeons (UK)																												
Royal families																												
Royal Society of Tropical Medicine and Hygiene																												
Rudolf Geigy Foundation																												
S.H.O.D. LLC																												
Schweizerischer Nationalfonds (SNF)																												
SIDA																												
Sightsavers	1																						13					
Sir Emeka Offor Foundation																												
Sir Halley Stewart Trust																												
South Asia Research Fund																												
Spanish Academy of Dermatology and Venereology (AEDV)																								</p>				
<table>
<thead>
<tr>
<th>Special Programme for Research and Training in Tropical Diseases (TDR)</th>
<th>1</th>
<th></th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Thomas Aquinas Parish</td>
<td></td>
</tr>
<tr>
<td>Stahl Family Foundation</td>
<td></td>
</tr>
<tr>
<td>That Man May See</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The END Fund</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Royal Society</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>The Task Force for Global Health</td>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The Union Against Tuberculosis and Lung Disease</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>The Wellcome Trust</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrasher Research Fund</td>
<td></td>
</tr>
<tr>
<td>UBS Optimus Foundation</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UK Department for International Development (DFID)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>UK Research and Innovation (UKRI)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKAID</td>
<td></td>
</tr>
<tr>
<td>Unclear/unknown</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>United Nations</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>United Nations Children’s Fund (UNICEF)</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>United Nations Development Programme (UNDP)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>United States Agency for International Development (USAID)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td></td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US National Institutes of Health</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard Charitable Endowment Program</td>
<td></td>
</tr>
<tr>
<td>Vestergaard Frandsen</td>
<td></td>
</tr>
</tbody>
</table>
Funding agencies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volta River Authority</td>
<td></td>
</tr>
<tr>
<td>West African Economic and Monetary Union (Union Économique et Monétaire Ouest-Africaine)</td>
<td></td>
</tr>
<tr>
<td>William H. Donner Foundation</td>
<td></td>
</tr>
<tr>
<td>Women’s Leadership Foundation</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>World Animal Protection (WAP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>World Bank</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>World Society for the Protection of Animals (WSPA)</td>
<td></td>
</tr>
<tr>
<td>YKK Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>27</td>
<td>21</td>
<td>50</td>
<td>34</td>
<td>35</td>
<td>93</td>
<td>50</td>
<td>88</td>
<td>152</td>
<td>113</td>
<td>86</td>
<td>106</td>
<td>116</td>
<td>87</td>
</tr>
</tbody>
</table>

Control, elimination, and eradication efforts for neglected tropical diseases
Annex I

Percentage of funded work by country

<table>
<thead>
<tr>
<th>Country*</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Benin</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>7</td>
<td>2%</td>
</tr>
<tr>
<td>Burundi</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Cameroon</td>
<td>27</td>
<td>7%</td>
</tr>
<tr>
<td>Chad</td>
<td>12</td>
<td>3%</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>9</td>
<td>2%</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>9</td>
<td>2%</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>35</td>
<td>9%</td>
</tr>
<tr>
<td>Gabon</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Ghana</td>
<td>26</td>
<td>6%</td>
</tr>
<tr>
<td>Guinea</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Kenya</td>
<td>37</td>
<td>9%</td>
</tr>
<tr>
<td>Lesotho</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Liberia</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Madagascar</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Malawi</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Mali</td>
<td>13</td>
<td>3%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>Multiple countries</td>
<td>44</td>
<td>11%</td>
</tr>
<tr>
<td>Namibia</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Niger</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>30</td>
<td>7%</td>
</tr>
<tr>
<td>Country*</td>
<td>Frequency</td>
<td>Percentage</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Rwanda</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Senegal</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>10</td>
<td>2%</td>
</tr>
<tr>
<td>South Africa</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>South Sudan</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>59</td>
<td>14%</td>
</tr>
<tr>
<td>The Gambia</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Togo</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Uganda</td>
<td>25</td>
<td>6%</td>
</tr>
<tr>
<td>Unclear</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Zambia</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>410</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Funding information was de-duplicated and 1 row per study was kept for country frequency table and studies with missing or unclear funder information were excluded.
Annex J

Country strategic plans for NTDs included in this review.

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Global</td>
<td>2021</td>
<td>World Health Organization</td>
<td>Ending the neglect to attain the Sustainable Development Goals A road map for neglected tropical diseases 2021–2030</td>
<td>https://espen.afro.who.int/system/files/content/resources/Ending%20the%20neglect%20to%20attain%20the%20sustainable%20development%20goals%20A%20road%20map%20for%20neglected%20tropical%20diseases%202021-2030.pdf</td>
</tr>
<tr>
<td>Country</td>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Global</td>
<td>2012</td>
<td>World Health Organization</td>
<td>Accelerating work to overcome the global impact of neglected tropical diseases: A roadmap for implementation: Executive summary</td>
<td>https://apps.who.int/iris/handle/10665/70809</td>
</tr>
<tr>
<td>Rwanda</td>
<td>2019</td>
<td>Rwanda Biomedical Centre, Ministry of Health-Rwanda</td>
<td>Neglected Tropical Diseases Strategic Plan 2019-2024</td>
<td>https://espen.afro.who.int/system/files/content/resources/RWANDA%20NTD%20STRATEGIC%20PLAN%202019-2024_Signed%20version%20%281%29.pdf</td>
</tr>
<tr>
<td>Country</td>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Annex K

Technical reports and programme evaluations included in this review

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniting to Combat NTDs</td>
<td>Latest report</td>
<td>5th report: Reaching a Billion</td>
<td>https://unitingtocombatntds.org/reports/5th-report/</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2022</td>
<td>Progress Toward Global Eradication of Dracunculiasis - Worldwide, January 2021-June 2022</td>
<td>10.15585/mmwr.mm7147a2</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2022</td>
<td>Dracunculiasis Eradication: End-Stage Challenges</td>
<td>10.4269/ajtmh.22-0197</td>
</tr>
<tr>
<td>Simpson et al.</td>
<td>2022</td>
<td>Research priorities to support the development of integrated national strategies to control skin-neglected tropical diseases</td>
<td>10.1093/trstmh/trac086</td>
</tr>
<tr>
<td>WHO Regional Office for Africa, ESPEN</td>
<td>2022</td>
<td>ESPEN 2021 Annual Report</td>
<td>https://espen.afro.who.int/system/files/content/resources/ESPEN%202021%20ANNUAL%20REPORT%20FINAL_v05.pdf</td>
</tr>
<tr>
<td>WHO Regional Office for Africa, ESPEN</td>
<td>2022</td>
<td>Report of the Fourth Meeting of NTD National Programme & Data Managers from the WHO African Region</td>
<td>https://espen.afro.who.int/about-espen</td>
</tr>
<tr>
<td>Amazigo et al.</td>
<td>2021</td>
<td>Community-directed distributors—The foot soldiers in the fight to control and eliminate neglected tropical diseases</td>
<td>10.1371/journal.pntd.0009088</td>
</tr>
<tr>
<td>Brattig et al.</td>
<td>2021</td>
<td>Onchocerciasis (river blindness)—more than a century of research and control</td>
<td>10.1016/j.actatropica.2020.105677</td>
</tr>
<tr>
<td>Haselbeck et al.</td>
<td>2021</td>
<td>Challenges to the Fight against Rabies-The Landscape of Policy and Prevention Strategies in Africa</td>
<td>10.3390/ijerph18041736</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2021</td>
<td>Progress Toward Global Eradication of Dracunculiasis, January 2020-June 2021</td>
<td>10.15585/mmwr.mm7044a1</td>
</tr>
<tr>
<td>Karki et al.</td>
<td>2021</td>
<td>Assessment of the Chad Guinea worm surveillance information system: A pivotal foundation for eradication</td>
<td>10.1371/journal.pntd.0009675</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sakho et al.</td>
<td>2021</td>
<td>Implementation of mass drug administration for neglected tropical diseases in Guinea during the COVID-19 pandemic</td>
<td>10.1371/journal.pntd.0009807</td>
</tr>
<tr>
<td>WHO Regional Office for Africa, ESPEN</td>
<td>2021</td>
<td>ESPEN's critical role in Health Systems Strengthening</td>
<td>https://espen.afro.who.int/system/files/content/resources/ESPEN%20fact%20sheet%20on%20HSS%20final_0.pdf</td>
</tr>
<tr>
<td>Adekeye et al.</td>
<td>2020</td>
<td>Mass administration of medicines in changing contexts: Acceptability, adaptability and community directed approaches in Kaduna and Ogun States, Nigeria</td>
<td>10.1371/journal.pntd.0008857</td>
</tr>
<tr>
<td>Asfaw et al.</td>
<td>2020</td>
<td>Towards the trachoma elimination target in the Southern region of Ethiopia: How well is the SAFE strategy being implemented?</td>
<td>10.3855/jidc.11703</td>
</tr>
<tr>
<td>Athingo et al.</td>
<td>2020</td>
<td>Fighting Dog-Mediated Rabies in Namibia-Implementation of a Rabies Elimination Program in the Northern Communal Areas</td>
<td>10.3390/tropicalmed5010012</td>
</tr>
<tr>
<td>Bah et al.</td>
<td>2020</td>
<td>Achievements and challenges of Lymphatic filariasis elimination in Sierra Leone</td>
<td>10.1371/journal.pntd.0008877</td>
</tr>
<tr>
<td>Colley et al.</td>
<td>2020</td>
<td>Contributions of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) to Schistosomiasis Control and Elimination: Key Findings and Messages for Future Goals, Thresholds, and Operational Research</td>
<td>10.4269/ajtmh.19-0787</td>
</tr>
<tr>
<td>Ferguson et al.</td>
<td>2020</td>
<td>Volunteer based approach to dog vaccination campaigns to eliminate human rabies: Lessons from Laikipia County, Kenya</td>
<td>10.1371/journal.pntd.0008260; 10.1371/journal.pntd.0008260.r001; 10.1371/journal.pntd.0008260.r002; 10.1371/journal.pntd.0008260.r003; 10.1371/journal.pntd.0008260.r004</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2020</td>
<td>Progress Toward Global Eradication of Dracunculiasis, January 2019-June 2020</td>
<td>10.15585/mmwr.mm6943a2</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2020</td>
<td>Elimination of Simulium neavei-Transmitted Onchocerciasis in Wambabya-Rwamarongo Focus of Western Uganda</td>
<td>10.4269/ajtmh.20-0195</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2020</td>
<td>Historical Elimination of Onchocerciasis from Victoria Nile Focus in Central Uganda Verified Using WHO Criteria</td>
<td>10.4269/ajtmh.20-0064</td>
</tr>
<tr>
<td>Katabarwa et al.</td>
<td>2020</td>
<td>The Galabat-Metema cross-border onchocerciasis focus: The first coordinated interruption of onchocerciasis transmission in Africa</td>
<td>https://journals.plos.org/plosnits/article?id=10.1371/journal.pntd.0007830</td>
</tr>
<tr>
<td>Martin et al.</td>
<td>2020</td>
<td>The use of serology for trachoma surveillance: Current status and priorities for future investigation</td>
<td>10.1371/journal.pntd.0008316</td>
</tr>
<tr>
<td>Salari et al.</td>
<td>2020</td>
<td>Financial Costs of the Zanzibar Elimination of Schistosomiasis Transmission Project</td>
<td>10.4269/ajtmh.20-0252</td>
</tr>
<tr>
<td>Solomon et al.</td>
<td>2020</td>
<td>The Importance of Failure: How Doing Impact Surveys That Fail Saves Trachoma Programs Money</td>
<td>10.4269/ajtmh.20-0686</td>
</tr>
<tr>
<td>Bah et al.</td>
<td>2019</td>
<td>Schistosomiasis in School Age Children in Sierra Leone After 6 Years of Mass Drug Administration With Praziquantel</td>
<td>10.3389/fpubh.2019.00001</td>
</tr>
<tr>
<td>Bof et al.</td>
<td>2019</td>
<td>Review of the National Program for Onchocerciasis Control in the Democratic Republic of the Congo</td>
<td>10.3390/tropicalmed4020092</td>
</tr>
<tr>
<td>Coetzter et al.</td>
<td>2019</td>
<td>A Novel Integrated and Labile eHealth System for Monitoring Dog Rabies Vaccination Campaigns</td>
<td>10.3390/vaccines7030108</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2019</td>
<td>Progress Toward Global Eradication of Dracunculiasis - January 2018-June 2019</td>
<td>10.15585/mmwr.mm6843a5</td>
</tr>
<tr>
<td>Kittur et al.</td>
<td>2019</td>
<td>Persistent Hotspots in Schistosomiasis Consortium for Operational Research and Evaluation Studies for Gaining and Sustaining Control of Schistosomiasis after Four Years of Mass Drug Administration of Praziquantel</td>
<td>10.4269/ajtmh.19-0193</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Manyeh et al.</td>
<td>2019</td>
<td>Using intervention mapping to design and implement quality improvement strategies towards elimination of Lymphatic filariasis in Northern Ghana</td>
<td>10.1371/journal.pntd.0007267</td>
</tr>
<tr>
<td>Pi-Bansa et al.</td>
<td>2019</td>
<td>Potential factors influencing Lymphatic filariasis transmission in hotspot and control areas in Ghana: the importance of vectors</td>
<td>10.1186/s40249-019-0520-1</td>
</tr>
<tr>
<td>Amnie, AG</td>
<td>2018</td>
<td>An impact evaluation of two rounds of mass drug administration on the prevalence of active trachoma: A clustered cross sectional survey</td>
<td>10.1371/journal.pone.0201911</td>
</tr>
<tr>
<td>Colebunders et al.</td>
<td>2018</td>
<td>From river blindness control to elimination: bridge over troubled water</td>
<td>10.1186/s40249-018-0406-7</td>
</tr>
<tr>
<td>Courtright et al.</td>
<td>2018</td>
<td>Strengthening the links between mapping, planning and global engagement for disease elimination: lessons learnt from trachoma</td>
<td>10.1136/bjophthalmol-2018-312476</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2018</td>
<td>Progress Toward Global Eradication of Dracunculiasis - January 2017-June 2018</td>
<td>10.15585/mmwr.mm6745a3</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2018</td>
<td>Dracunculiasis Eradication: Are We There Yet?</td>
<td>10.4269/ajtmh.18-0204</td>
</tr>
<tr>
<td>Koudou et al.</td>
<td>2018</td>
<td>Update on the current status of onchocerciasis in Côte d’Ivoire following 40 years of intervention: Progress and challenges</td>
<td>10.1371/journal.pntd.0006897</td>
</tr>
<tr>
<td>WHO Regional Office for Africa, ESPEN</td>
<td>2018</td>
<td>ESPEN 2017 Annual Report</td>
<td>https://espen.afro.who.int/system/files/content/resources/2017_ESPEN_ANNUAL_REPORT_FINAL.pdf</td>
</tr>
<tr>
<td>Assoum et al.</td>
<td>2017</td>
<td>Spatiotemporal distribution and population at risk of soil-transmitted helminth infections following an eight-year school-based deworming programme in Burundi, 2007-2014</td>
<td>10.1186/s13071-017-2505-x</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Biritwum et al.</td>
<td>2017</td>
<td>Fifteen years of programme implementation for the elimination of Lymphatic filariasis in Ghana: Impact of MDA on immunoparasitological indicators</td>
<td>10.1371/journal.pntd.0005280</td>
</tr>
<tr>
<td>Boock et al.</td>
<td>2017</td>
<td>Yaws resurgence in Bankim, Cameroon: The relative effectiveness of different means of detection in rural communities</td>
<td>10.1371/journal.pntd.0005557</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2017</td>
<td>Progress Toward Global Eradication of Dracunculiasis, January 2016-June 2017</td>
<td>10.15585/mmwr.mm6540a5</td>
</tr>
<tr>
<td>Kastner et al.</td>
<td>2017</td>
<td>How much will it cost to eradicate Lymphatic filariasis? An analysis of the financial and economic costs of intensified efforts against Lymphatic filariasis</td>
<td>10.1371/journal.pntd.0005934</td>
</tr>
<tr>
<td>Lechenne et al.</td>
<td>2017</td>
<td>The Importance of a Participatory and Integrated One Health Approach for Rabies Control: The Case of N'Djamena, Chad</td>
<td>10.3390/tropicalmed2030043</td>
</tr>
<tr>
<td>Njim, T; Aminde, LN</td>
<td>2017</td>
<td>An appraisal of the neglected tropical diseases control program in Cameroon: the case of the national program against onchocerciasis</td>
<td>10.1186/s12889-017-4037-x</td>
</tr>
<tr>
<td>Onowhakpor et al.</td>
<td>2017</td>
<td>Assessment of the performance of community-directed treatment with ivermectin strategy for the control and elimination of onchocerciasis in Edo State, Nigeria</td>
<td>10.4103/ijph.IJPH_236_16</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2016</td>
<td>Progress Toward Global Eradication of Dracunculiasis -January 2015-June 2016</td>
<td>10.15585/mmwr.mm6540a5</td>
</tr>
<tr>
<td>Lechenne et al.</td>
<td>2016</td>
<td>Operational performance and analysis of two rabies vaccination campaigns in N'Djamena, Chad</td>
<td>10.1016/j.vaccine.2015.11.033</td>
</tr>
<tr>
<td>N'Diaye et al.</td>
<td>2016</td>
<td>Schistosomiasis Sustained Control Program in Ethnic Groups around Ninefescha (Eastern Senegal)</td>
<td>10.4269/ajtmh.15-0125</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Uniting to Combat NTDs</td>
<td>2016</td>
<td>4th report: Reaching the Unreached</td>
<td>https://unitingtocombatntds.org/reports/4th-report/</td>
</tr>
<tr>
<td>Bof et al.</td>
<td>2015</td>
<td>Onchocerciasis control in the Democratic Republic of Congo (DRC): challenges in a post-war environment</td>
<td>10.1111/tmi.12397</td>
</tr>
<tr>
<td>French et al.</td>
<td>2015</td>
<td>Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes</td>
<td>10.1186/s13071-015-1138-1</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2015</td>
<td>Progress Toward Global Eradication of Dracunculiasis, January 2014-June 2015</td>
<td>10.15585/mmwr.mm6441a1</td>
</tr>
<tr>
<td>Nikolay et al.</td>
<td>2015</td>
<td>Understanding Heterogeneity in the Impact of National Neglected Tropical Disease Control Programmes: Evidence from School-Based Deworming in Kenya</td>
<td>10.1371/journal.pntd.0004108</td>
</tr>
<tr>
<td>Worrell et al.</td>
<td>2015</td>
<td>Cost Analysis of Tests for the Detection of Schistosoma mansoni Infection in Children in Western Kenya</td>
<td>10.4269/ajtmh.14-0644</td>
</tr>
<tr>
<td>Jones et al.</td>
<td>2014</td>
<td>Logistics of Guinea worm Disease Eradication in South Sudan</td>
<td>10.4269/ajtmh.13-0110</td>
</tr>
<tr>
<td>Awofeso, N</td>
<td>2013</td>
<td>Towards global Guinea worm eradication in 2015: the experience of South Sudan</td>
<td>10.1016/j.ijid.2013.03.003</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention.</td>
<td>2013</td>
<td>Progress toward global eradication of dracunculiasis--January 2012-June 2013</td>
<td>https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6242a1.htm</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2013</td>
<td>Dracunculiasis Eradication: And Now, South Sudan</td>
<td>10.4269/ajtmh.13-0090</td>
</tr>
<tr>
<td>Mathieu et al.</td>
<td>2013</td>
<td>It is Possible: Availability of Lymphedema Case Management in each Health Facility in Togo. Program Description, Evaluation, and Lessons Learned</td>
<td>10.4269/ajtmh.12-0453</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Sodahlon et al.</td>
<td>2013</td>
<td>A Success Story: Togo Is Moving toward Becoming the First Sub-Saharan African Nation to Eliminate Lymphatic filariasis through Mass Drug Administration and Countrywide Morbidity Alleviation</td>
<td>10.1371/journal.pntd.0002080</td>
</tr>
<tr>
<td>Uniting to Combat NTDs</td>
<td>2013</td>
<td>1st Report: From Promises to Progress</td>
<td>https://unitingtocombatntds.org/reports/1st-report/</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention.</td>
<td>2012</td>
<td>Progress toward global eradication of dracunculiasis--January 2011-June 2012</td>
<td>https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6142a2.htm</td>
</tr>
<tr>
<td>Dembele et al.</td>
<td>2012</td>
<td>Implementing Preventive Chemotherapy through an Integrated National Neglected Tropical Disease Control Program in Mali</td>
<td>10.1371/journal.pntd.0001574</td>
</tr>
<tr>
<td>Knopp et al.</td>
<td>2012</td>
<td>Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach</td>
<td>10.1186/1471-2458-12-930</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2011</td>
<td>Incremental Cost of Conducting Population-Based Prevalence Surveys for a Neglected Tropical Disease: The Example of Trachoma in 8 National Programs</td>
<td>10.1371/journal.pntd.0000979</td>
</tr>
<tr>
<td>Cupp et al.</td>
<td>2011</td>
<td>Elimination of human onchocerciasis: History of progress and current feasibility using ivermectin (Mectizan (R)) monotherapy</td>
<td>10.1016/j.actatropica.2010.08.009</td>
</tr>
<tr>
<td>Hodges et al.</td>
<td>2011</td>
<td>Neglected tropical disease control in post-war Sierra Leone using the Onchocerciasis Control Programme as a platform</td>
<td>10.1016/j.inhe.2011.03.003</td>
</tr>
<tr>
<td>Kelly-Hope et al.</td>
<td>2011</td>
<td>Lymphatic filariasis in the Democratic Republic of Congo; micro-stratification overlap mapping (MOM) as a prerequisite for control and surveillance</td>
<td>10.1186/1756-3305-4-178</td>
</tr>
<tr>
<td>Richards et al.</td>
<td>2011</td>
<td>Epidemiological and Entomological Evaluations after Six Years or More of Mass Drug Administration for Lymphatic filariasis Elimination in Nigeria</td>
<td>10.1371/journal.pntd.0001346</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC).</td>
<td>2010</td>
<td>Progress toward global eradication of dracunculiasis, January 2009-June 2010</td>
<td>https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5938a4.htm</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC).</td>
<td>2009</td>
<td>Progress toward global eradication of dracunculiasis, January 2008-June 2009</td>
<td>https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5840a2.htm</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Garms et al.</td>
<td>2009</td>
<td>The elimination of the vector Simulium neavei from the Itwara onchocerciasis focus in Uganda by ground larviciding</td>
<td>10.1016/j.actatropica.2009.04.001</td>
</tr>
<tr>
<td>Malecela et al.</td>
<td>2009</td>
<td>The sharp end - experiences from the Tanzanian programme for the elimination of Lymphatic filariasis: notes from the end of the road</td>
<td>10.1179/000349809X12502035776676</td>
</tr>
<tr>
<td>Yayemain et al.</td>
<td>2009</td>
<td>Achieving trachoma control in Ghana after implementing the SAFE strategy</td>
<td>10.1016/j.trstmh.2009.02.007</td>
</tr>
<tr>
<td>Kyelem et al.</td>
<td>2008</td>
<td>Determinants of success in national programs to Eliminate Lymphatic filariasis: A perspective identifying essential elements and research needs</td>
<td>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694403/</td>
</tr>
<tr>
<td>Goldman et al.</td>
<td>2007</td>
<td>National mass drug administration costs for Lymphatic filariasis elimination</td>
<td>10.1371/journal.pntd.0000067</td>
</tr>
<tr>
<td>Ndyomugyenyi et al.</td>
<td>2007</td>
<td>Progress towards the elimination of onchocerciasis as a public-health problem in Uganda: opportunities, challenges and the way forward</td>
<td>10.1179/136485907X176355</td>
</tr>
<tr>
<td>Rwakimari, JB; Hopkins, DR; Ruiz-Tiben, E</td>
<td>2006</td>
<td>Uganda’s successful Guinea worm Eradication Program</td>
<td>10.4269/ajtmh.2006.75.3</td>
</tr>
<tr>
<td>Hopkins et al.</td>
<td>2005</td>
<td>Dracunculiasis eradication: The final inch</td>
<td>10.4269/ajtmh.2005.73.669</td>
</tr>
<tr>
<td>Olaseha IO, Sridhar MK.</td>
<td>2005</td>
<td>Participatory action research: community diagnosis and intervention in controlling urinary schistosomiasis in an urban community in Ibadan, Nigeria</td>
<td>10.2190/CBYM-94N2-E7DH-QRAL</td>
</tr>
<tr>
<td>Waters, HR; Rehwinkel, JA; Burnham, G</td>
<td>2004</td>
<td>Economic evaluation of Mectizan distribution</td>
<td>10.1111/j.1365-3156.2004.01210.x</td>
</tr>
<tr>
<td>Anosike et al.</td>
<td>2003</td>
<td>Control of endemic dracunculiasis in Ebonyi state, south-eastern Nigeria</td>
<td>10.1078/1438-4639-00246</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC).</td>
<td>2003</td>
<td>Progress toward global eradication of dracunculiasis, January-June 2003</td>
<td>https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5237a1.htm</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC).</td>
<td>2002</td>
<td>Progress toward global dracunculiasis eradication, June 2002</td>
<td>Link</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC).</td>
<td>2000</td>
<td>Progress toward global dracunculiasis eradication, June 2000</td>
<td>Link</td>
</tr>
<tr>
<td>Cline, BL; Hewlett, BS</td>
<td>1996</td>
<td>Community-based approach to schistosomiasis control</td>
<td>10.1016/0001-706X(95)00118-X</td>
</tr>
</tbody>
</table>