Best practices for haemoglobin measurement in population-level anaemia surveys

Technical brief

January 2024

This brief describes the current best practices for haemoglobin measurement. It provides guidance for people who are planning or implementing field surveys that will assess anaemia prevalence at a population level.

Background

Haemoglobin concentration measured in a blood specimen is most commonly used to screen for and diagnose anaemia (1). Accurate and precise measurements of haemoglobin concentration are essential to reliably estimate the prevalence of anaemia at a population level. In large-scale surveys, haemoglobin is most commonly measured using single-drop capillary blood specimens in point-of-care devices. In some instances, venous blood specimens are used.

However, emerging evidence suggests that the use of single-drop capillary blood can introduce a substantial amount of random and/or systematic error. These errors may lead to inaccurate estimates. Based on this, there are growing concerns about the use of capillary blood specimens in population-based anaemia prevalence surveys.

Ongoing efforts to examine relevant evidence

Details of the emerging evidence and critical issues are being examined by members of the WHO-UNICEF Technical Expert Advisory group on nutrition Monitoring (TEAM) and this brief describes best practices discussed within the TEAM working group for Anaemia. This working group is aiming to publish emerging evidence on the types of errors (random and systematic) in haemoglobin measurement that can influence the accuracy and precision of estimates. They will summarize selected examples of evidence from epidemiological research and validation studies that use different analytical methods to measure haemoglobin, and will highlight the gaps where further research is needed.

Inside

Background 1
Ongoing efforts to examine relevant evidence 1
Current best practices 2
Acknowledgements 6
Suggested citation 6
References 7
Significant efforts are under way to rigorously appraise and inform global policy on haemoglobin measurement in population-level anaemia surveys. WHO is commissioning a systematic review of the literature to assess the accuracy and precision of methods for collecting and analysing data for haemoglobin assessment in populations. WHO will also release global recommendations for updating haemoglobin thresholds for diagnosing anaemia, and adjustments for factors known to affect haemoglobin concentrations. The HEmoglobin MEasurment (HEME) Working Group, convened by the United States Agency for International Development (USAID), is undertaking research in six countries with the aim of identifying optimal procedures for measuring haemoglobin, including the potential use of pooled (multiple drops) capillary blood.

Current best practices

At the time of this writing, it is recommended to use venous blood for measuring haemoglobin with an automated haematology analyser, following standard operating procedures (2–6) and generally accepted quality control assurance measures. These measures include daily quality control (QC) checks, regular instrument maintenance and verification, and/or participation in proficiency testing schemes. If the use of an automated analyser is not possible, the use of a point-of-care haemoglobinometer by trained phlebotomists or specimen collectors could be considered. Typically, haemoglobinometers are calibrated against international reference standards by the manufacturer before release and require no further calibration. The current best practices for collecting venous blood for use with either option is shown in Figure 1.

Figure 1: Best practices for collecting venous blood for use with an automated haematology analyser or a point-of-care haemoglobinometer

Automated haematology analyser
- The tube is transported from field to laboratory in a cold box with ice packs, and is ideally maintained between 4°C and 8°C.
- Consider including a thermometer to monitor temperatures and replace ice packs as necessary to maintain the cold chain.
- The tube is stored in a refrigerator at 4°C until analysis.
- The tube is inserted into the analyser as soon as possible, ideally on the same day but no later than one week if stored in a refrigerator at 4°C.

Point-of-care haemoglobinometer
- 2 to 3 drops of blood are transferred from the tube to parafilm or to wax paper, using a disposable transfer pipette or pulled directly from the tube into the cuvette.
- The cuvette lightly touches the blood specimen and blood is pulled into the cuvette.
- The cuvette is wiped and inserted into the device within 15 seconds.

1 The Kingdom of Cambodia, the Federal Democratic Republic of Ethiopia, the Republic of Guatemala, the Lebanese Republic, the Federal Republic of Nigeria, the United Republic of Tanzania.
Factors to consider when planning a survey to assess population-level anaemia prevalence

The *Micronutrient Survey Manual & Toolkit* (2, 3) provides guidance on the steps needed to plan and conduct a population-based representative anaemia survey. The document includes comprehensive modules on survey design, sample size, and the selection of clusters, households and participants. Other resources that describe survey planning and design are also available (7).

Survey planning should consider the measurement of additional analytes (for example, ferritin concentration), selection of the analytical device, and financial and logistical implications (Table 1). Note that several steps are required to plan and carry out venous blood collection (Table 2).

If it is not feasible to measure haemoglobin in the full study population of interest (for example, in the case of a national survey), it may be reasonable to consider selecting a subsample of participants and extrapolating the results to the wider population. In this case, planning will need to take into account sample size calculations, sampling frame design (such as geographical clusters), eligibility criteria and recruitment of participants (2, 3).

Table 1: Comparison of analytic methods

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Automated haematology analyser</th>
<th>Point-of-care haemoglobinometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired haematological analytes to be measured</td>
<td>Can provide a complete blood count (CBC), which typically includes haemoglobin, haematocrit, mean corpuscular volume (MCV), and other indices which may help differentiate the type of anaemia (for example, microcytic anaemia).</td>
<td>Measurement is limited to haemoglobin, no other analytes.</td>
</tr>
<tr>
<td>Logistics</td>
<td>Not portable, and must be housed relatively close to the collection site. Requires a reliable and consistent source of electricity. If possible, specimens should be analysed on the same day; otherwise they can be stored for a maximum of one week, if refrigerated at 4°C.</td>
<td>Portable and battery-operated, and thus can be taken to any location site. However, functionality may be affected by extreme weather conditions such as humidity and temperature.</td>
</tr>
<tr>
<td>Technical resources and support required</td>
<td>Requires a high level of technical expertise to maintain and operate; some types may require specialized laboratory technicians.</td>
<td>Easy to use with basic, yet essential, training to operate correctly. Requires little maintenance beyond cleaning.</td>
</tr>
<tr>
<td>Financial resources and support required</td>
<td>Cost varies widely depending on the number of analytes to be measured and on throughput. Purchase price can range from US$ 1000 to US$ 25 000. Reagents incur a small additional cost per specimen.</td>
<td>Cost varies by model: devices can range from US$ 300 to US$ 800, and cuvettes can range from US$ 0.50 to US$ 1.50 per piece. Cuvettes are for single-use only.</td>
</tr>
<tr>
<td>Reagents</td>
<td>Requires a regular supply of reagents that are specific to each analyser. An adequate supply is crucial to ensure that analysis is reliable and consistent during the survey.</td>
<td>Uses disposable cuvettes (specific characteristics vary by device). Some require protection from humidity because of reagent degradation, and/or may need protection from damage such as scratching.</td>
</tr>
<tr>
<td>Required materials for quality control (QC) checks</td>
<td>QC materials/reagents are specific to each type of analyser and can be procured from the supplier.</td>
<td>Manufacturers may recommend QC solutions specific to each model or type.</td>
</tr>
<tr>
<td>QC assurance</td>
<td>Laboratory should be accredited and participating in a QC assurance programme for haemoglobin measurement (such as the College of American Pathologists Proficiency Testing). Most have built-in QC calibration, which should be regularly assessed and monitored, along with daily QC checks. A qualified technician should service and/or calibrate the analyser to ensure its proper functioning before it can be used.</td>
<td>Factory-calibrated against a reference method and need no further calibration. If a haemoglobinometer does not comply with manufacturer QC standards (for example if it reads outside of the range of acceptable measurement), it should be cleaned and rechecked. If the problem is confirmed with a second failed reading, it should be returned to the company, and a new device should be tested and used.</td>
</tr>
</tbody>
</table>
Table 2: Steps and considerations in preparation for collecting venous blood specimens

<table>
<thead>
<tr>
<th>Step</th>
<th>Relevant activities, materials and/or details to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Procure supplies and materials</td>
<td>Supplies, survey tools and materials for training, pre-testing and survey data collection should be procured well in advance of the survey to ensure an adequate stock and supply chain, while ensuring that no supplies expire before or during data collection (see Step 3). Blood collection and safety supplies, reagents, cuvettes, devices, labels and QC materials are required. Conduct QC checks on the analytical devices, and reserve the scheduled use of the analyser if needed.</td>
</tr>
<tr>
<td>2. Recruit and train phlebotomists</td>
<td>Certified phlebotomists should be recruited and trained as per the specific survey protocol. They may need to have specific experience for defined populations, such as young children.</td>
</tr>
<tr>
<td>3. Perform training and practise exercises</td>
<td>Standardized training exercises should be conducted to allow phlebotomists to practise blood collection multiple times under close supervision. This ensures that the protocol is being followed, and allows errors or deviations to be corrected before the survey begins. In addition to the phlebotomists, the exercises should include all other survey staff, and should cover all survey procedures including data collection and the and labeling, handling and transport of specimens. During practice, the survey staff must be able to demonstrate that they produce consistent results within certain pre-defined parameters, for example within a margin of 3% across five replicates of measurement.</td>
</tr>
<tr>
<td>4. Prepare field site(s) for blood collection</td>
<td>When possible, the collection site should be in a quiet, clean, and well-lit area. Participants should be seated in a comfortable chair, with easily-accessible blood collection supplies and safety materials.</td>
</tr>
<tr>
<td>5. Prepare each participant for blood collection</td>
<td>The phlebotomist must check that the participant’s identification and labelled collection tube are correctly matched, that the participant has been informed of the procedure and has provided consent, and that all required participant information (such as their fasting state) is recorded.</td>
</tr>
<tr>
<td>6. Ensure safety considerations and the proper disposal of biohazardous material</td>
<td>Blood specimens should be handled according to universal safety precautions, as the specimens may be infectious. Protective gloves should be worn at all times, and gloves must be changed between participants. Biohazardous material such as needles should be disposed of in specialized safety containers, according to established safety protocols. A system for reporting adverse events should be established to record accurate details of and prevent future incidents.</td>
</tr>
</tbody>
</table>
Assessing and reporting anaemia survey data

Example templates for the reporting of haemoglobin results can be found online in the Micronutrient Survey Manual & Toolkit (2, 3). Calculating and reporting mean haemoglobin concentrations with standard deviations or confidence intervals among subgroups of the study population can be helpful and sometimes more informative than reporting anaemia prevalence rates alone. Visual assessment of frequency distributions of haemoglobin concentrations among subgroups of the study population may also be useful (2, 3, 8).

Once haemoglobin measurements have been obtained, data should be cleaned and assessed for quality. This includes checking for potentially erroneous values (for example, when the value is so extremely low or high that it would be considered biologically implausible). Values that appear erroneous should be carefully reviewed, but only after adjustment for external influencing factors with established adjustment values (including the altitude of residence, and smoking habits) (9). Haemoglobin values of <40 and >180 g/L for non-pregnant women and children, and of <40 and >200 g/L for men have been suggested as implausible values in previous literature (10). Table 3 describes additional specific information that is important to report, in terms of assessing validity and allowing reproducibility across surveys.

Table 3: Information to include in a report of population-based anaemia surveys

Methodology section

- Type of survey (for example cross-sectional, sentinel, administrative/routine data, longitudinal)
- Population groups assessed (age, sex, pregnancy status, gestational age) and other characteristics such as the elevation of residence, smoking status
- Sampling methodology including design and procedure, sample size determination, and sampling frame (for example by defining the strata, primary sampling unit and cluster)
- The type and serial numbers of analytical devices (automated analyser or type/model of haemoglobinometer)
- Blood collection materials such as tubes, lancets and needles
- Blood source (venous, single-drop capillary, or pooled capillary specimen) and blood volume collected. If single or pooled drops were collected, then describe which finger was used for blood collection, the procedures to wipe blood away, the number of drops collected, and whether they were collected from parafilm or directly from tubes
- Fasting state (non-fasting or number of hours fasting)
- Position of the participant (for example, seated)
- Quality control procedures for equipment
- Training of field staff in data collection and use of equipment
- Monitoring of data collection
- Data entry procedures, data cleaning (for example, for biologically implausible values) and data analysis plan
- Assessment of and adjustments for elevation and smoking applied to haemoglobin concentrations
Results section

- Total number of primary sampling units sampled vs primary sampling units completed
- Total number of sample households/clinics
- Total number of individuals in the sample who were eligible, as well as those who completed and those who refused
- Total number of haemoglobin measurements, and if applicable, the number of haemoglobin measurements that were excluded due to biologically implausible values
- Mean or median haemoglobin concentration (and standard errors or 95% confidence intervals), and anaemia prevalence. This should be based on WHO anaemia thresholds and anaemia classification on severity thresholds (mild, moderate or severe), for each applicable subgroup of the study population (subgroups may include non-pregnant women, pregnant women, children 6–23 and 24–59 months) The description should also include the region, sub-region and demographic characteristics of the study population, depending on the survey design
- Whether haemoglobin measurements were adjusted for elevation and smoking
- If applicable, weighted and unweighted prevalence estimates
- Quality control results may include data tracking on how and when QC testing was conducted for all analytical devices, and what materials were used, for example QC solutions or QC lot number

Acknowledgements

This technical brief is an outcome of the WHO-UNICEF Technical Expert Advisory group on nutrition Monitoring (TEAM). It was prepared by the TEAM working group for Anaemia under the joint coordination of the WHO Department of Nutrition and Food Safety and the UNICEF Division of Data, Analytics, Planning and Monitoring.

The brief was conceived and developed by Crystal Karakochuk (UBC) with technical inputs from Omar Dary (USAID), Monica Flores-Urrutia (WHO), Maria Nieves García-Casal (WHO), Chika Hayashi (UNICEF), Maria Elena D Jeffersds (CDC), Robert Johnson (UNICEF), Leila Larson (USC), Carine Mapango (CDC), Denish Moorthy (JSI), Sorrel Namaste (RTI), Dora Inés Mazariegos Cordero (INCAP), Lisa Rogers (WHO), Kuntal Saha (WHO) and Sara Wuehler (NI).

Suggested Citation

References

