Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”.

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Cataloguing-in-Publication (CIP) data. CIP data are available at https://iris.who.int/.

Sales, rights and licensing. To purchase WHO publications, see https://www.who.int/publications/book-orders. To submit requests for commercial use and queries on rights and licensing, see https://www.who.int/copyright.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

The named authors alone are responsible for the views expressed in this publication.

This publication forms part of the WHO guideline entitled Consolidated guidelines on differentiated HIV testing services. It is being made publicly available for transparency purposes and information, in accordance with the WHO handbook for guideline development, 2nd edition (2014).
Contents

Modelling the use of HIV self-testing for oral PrEP scale-up in Kenya: Impact on drug resistance and HIV outcomes ... 2

Abstract .. 2
Modelling the use of HIV self-testing for oral PrEP scale-up in Kenya: Impact on drug resistance and HIV outcomes

Sarah N. Cox¹,²*, Linxuan Wu¹,²*, Rachel Wittenauer²,³, Samantha Clark²,³, D. Allen Roberts¹, Ifechukwu Benedict Nwogu²,³, Olga Vitruk¹,², Alexandra P. Kuo³, Cheryl Johnson⁴, Muhammad S. Jamil⁴, Anita Sands⁵, Robin Schaefer⁴, Rachel Baggaley⁴, Joanne D. Stekler¹,²,⁶, Adam Akullian²,⁷, Monisha Sharma²

1. Department of Epidemiology, University of Washington, Seattle, WA, USA
2. Department of Global Health, University of Washington, Seattle, WA, USA
3. Department of Pharmacy, University of Washington, Seattle, WA, USA
4. Global HIV, Hepatitis and STIs Programmes, World Health Organization, Geneva, Switzerland
5. Regulation and Prequalification Department, World Health Organization, Geneva, Switzerland
6. Department of Medicine, University of Washington, Seattle, WA, USA
7. Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA

* co-first authors

Abstract

Background

Provision of community-based oral pre-exposure prophylaxis (PrEP) has the potential to expand PrEP coverage. HIV self-testing (HIVST) can facilitate community-based PrEP delivery, but results may have lower sensitivity than facility-based HIV testing, potentially leading to inappropriate PrEP use among persons with HIV and subsequent development of drug resistance. The impact on drug resistance of HIVST use for PrEP scale-up is not well understood.

Methods

We parameterized an agent-based network model, EMOD-HIV, to simulate PrEP scale-up in western Kenya using four testing scenarios: (1) provider-administered nucleic acid testing (NAT), (2) provider-administered rapid diagnostic tests detecting antibodies (Ab RDT), (3) blood-based HIVST and (4) oral fluid HIVST. Scenarios were compared with a no PrEP counterfactual. Individuals ages 18 to 49 years with one or more sexual partners and who screened HIV-negative were eligible for PrEP. We assessed the cost and health impact of rapid PrEP scale-up using these different HIV testing modalities.

Results

PrEP coverage of 29% was projected to avert 54% of HIV infections and 17% of HIV-related deaths among adults ages 18 to 49 over 20 years; health impacts were similar across HIV testing modalities used to deliver PrEP. The percentage of HIV infections with PrEP-associated resistance to nucleoside reverse transcriptase inhibitor (NRTI) drugs was 0.6% and 0.8% in the blood HIVST and oral HIVST scenarios, respectively, compared with 0.3% and 0.2% in the Ab RDT and NAT scenarios. Accounting for background NRTI resistance, we found similarly low proportions of drug resistance across scenarios. The budget impact of implementing PrEP using HIVST and provider-administered RDT were similar, while NAT was at least 50% more costly.
Conclusions

Scaling up PrEP using HIVST has similar health impacts, costs and low risk of drug resistance as provider-administered RDT. Stakeholders should consider leveraging HIVST to expand PrEP access among those at HIV risk.

Full details are available in the report: https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(23)00268-0/fulltext